精英家教网 > 高中数学 > 题目详情
△ABC中,角A,B,C所对的边分别为a,b,c,已知向量
m
=(a,btanA),
n
=(b,atanB)

(1)若
m
n
,试判断△ABC的形状;
(2)若
m
n
,且a=2
3
,b=2
,求△ABC的面积.
分析:(1)由两向量平行时坐标满足的关系列出等式,利用同角三角函数间的基本关系弦化切后,再利用正弦定理变形,然后利用二倍角的正弦函数公式得到sin2A=sin2B,由A和B都为三角形的内角,得到A+B的范围,进而得到2A=2B或2A与2B互补,得到两角相等或两角互余,可得三角形为等腰三角形或直角三角形;
(2)由两向量垂直时两向量的数量积为0,根据两向量的坐标列出等式,两边同时除以ab后得到tanAtanB=-1,再利用同角三角函数间的基本关系切化弦,并利用两角和与差的余弦函数公式变形得到cos(A-B)=0,由a大于b,根据大边对大角得到A大于B,进而得到A-B=
π
2
,用B表示出A,由a,b,sinA及sinB,利用正弦定理列出关系式,将表示出的A代入,利用诱导公式及同角三角函数间的基本关系弦化切后,得到tanB的值,由B的范围,利用特殊角的三角函数值求出B的度数,由A与B的关系式求出A的度数,再利用三角形的内角和定理求出C的度数,求出sinC的值,再由a与b的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)由
m
n
,知a2tanB=b2tanA,即a2sinBcosA=b2sinAcosB,
利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B,
又A,B∈(0,π),0<A+B<π,
∴2A=2B,或2A+2B=π,即A=B或A+B=
π
2

则△ABC为等腰三角形或直角三角形;
(2)由
m
n
,知ab+abtanAtanB=0,即tanAtanB=-1,
∴cosAcosB+sinAsinB=0,即cos(A-B)=0,
又A,B∈(0,π),a=2
3
,b=2

∴A>B,
A-B=
π
2

在△ABC中,由正弦定理得:
2
sinB
=
2
3
sinA
=
2
3
sin(B+
π
2
)
=
2
3
cosB

tanB=
3
3
,又B∈(0,π),
B=
π
6

A=B+
π
2
=
3
C=
π
6

S=
1
2
absinC=
1
2
×2
3
×2×
1
2
=
3
点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,正弦、余弦定理,两角和与差的余弦函数公式,二倍角的正弦函数公式,三角形的面积公式,以及正弦、余弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案