【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.
(1)若,证明:函数必有局部对称点;
(2)若函数在区间内有局部对称点,求实数的取值范围;
(3)若函数在上有局部对称点,求实数的取值范围.
【答案】(1)见解析;(2);(3)
【解析】
试题分析:(1)利用题中所给的定义,通过二次函数的判别式大于0,证明二次函数有局部对称点;(2)利用方程有解,通过换元,转化为打钩函数有解问题,利用函数的图象,确定实数c的取值范围;(3)利用方程有解,通过换元,转化为二次函数在给定区间有解,建立不等式组,通过解不等式组,求得实数的取值范围.
试题解析:(1)由得=,代入得,
=,得到关于的方程=).
其中,由于且,所以恒成立,
所以函数=)必有局部对称点.
(2)方程=在区间上有解,于是,
设),,,
其中,所以.
(3),由于,
所以=.
于是=(*)在上有解.
令),则,
所以方程(*)变为=在区间内有解,
需满足条件:.
即,,化简得.
科目:高中数学 来源: 题型:
【题目】设四棱锥P-ABCD的底面不是平行四边形,用平面去截此四棱锥,使得截面是平行四边形,则这样的平面( )
A.不存在
B.有且只有1个
C.恰好有4个
D.有无数多个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且椭圆上的一点与两个焦点构成的三角形周长为.
(1)求椭圆的方程;
(2)已知直线与椭圆相交于两点.
①若线段中点的横坐标为,求的值;
②在轴上是否存在点,使为定值?若是,求点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
②已知命题p:x∈R,x2+6x+11<0,则p:x∈R,x2+6x+11≥0;
③若命题“p”与命题“p或q”都是真命题,则命题q一定是真命题;
④命题“若0<a<1,则loga(a+1)<log
其中正确结论的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.
(Ⅰ)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是偶数的概率;
(Ⅱ)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了次才停止取出卡片,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com