精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台,平面平面,,BE=EF=FC=1,BC=2,AC=3.

)求证:EF⊥平面ACFD

)求二面角B-AD-F的平面角的余弦值.

【答案】)见解析;(

【解析】试题分析:()先证,再证,进而可证平面;()方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.

试题解析:()延长相交于一点,如图所示.

因为平面平面,且,所以平面,因此

又因为

所以为等边三角形,且的中点,则

所以平面

)方法一:过点Q,连结

因为平面,所以,则平面,所以

所以是二面角的平面角.

中, ,得

中, ,得

所以二面角的平面角的余弦值为

方法二:如图,延长相交于一点,则为等边三角形.

的中点,则,又平面平面,所以, 平面

以点为原点,分别以射线的方向为的正方向,建立空间直角坐标系

由题意得

因此,

设平面的法向量为,平面的法向量为

,得,取

,得,取

于是,

所以,二面角的平面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—4:极坐标与参数方程

已知曲线的参数方程是为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是

1写出的极坐标方程和的直角坐标方程;

2已知点的极坐标分别为,直线与曲线相交于两点,射线与曲线相交于点,射线与曲线相交于点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面.

(1)求证: 平面

(2)若为线段的中点,且过三点的平面与线段交于点,确定点的位置,说明理由;并求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为: .

1)求 的值;

2)设,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其导函数为.

(1)设,若函数上有且只有一个零点,求的取值范围;

(2)设,且,点是曲线上的一个定点,是否存在实数,使得成立?证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EF分别是ADDD1的中点.

求证:(1)EF∥平面C1BD

(2)A1C⊥平面C1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·怀仁期中)已知命题x∈[-1,2],函数f(x)=x2x的值大于0.若是真命题,则命题可以是(  )

A. x∈(-1,1),使得cos x<

B. “-3<m<0”是“函数f(x)=x+log2xm在区间上有零点”的必要不充分条件

C. 直线x是曲线f(x)=的一条对称轴

D. x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于-1

查看答案和解析>>

同步练习册答案