精英家教网 > 高中数学 > 题目详情
7.正弦函数y=sin(x+$\frac{3π}{2}$),x∈R的图象关于(  )对称.
A.y轴B.直线x=$\frac{3π}{2}$C.直线x=$\frac{π}{2}$D.直线x=-$\frac{π}{2}$

分析 利用诱导公式化简函数的解析式,再利用余弦函数的图象特征得出结论.

解答 解:∵函数y=sin(x+$\frac{3π}{2}$)=-cosx,此函数为偶函数,故它的图象关于y轴对称,
故选:A.

点评 本题主要考查余弦函数的图象特征,诱导公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N*),其中λ>0.
(1)写出a1,a2,a3
(2)由(1)数列{an}猜想出数列{an}的通项公式并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0相交于A,B两点,当线段AB最短时直线l的方程为x+3y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若平行四边形ABCD的三个顶点为A(-1,3),B(3,4),C(2,2),求顶点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y∈(0,2),则$\sqrt{{x^2}+{y^2}}+\sqrt{{x^2}+{{(y-2)}^2}}+\sqrt{{{(x-2)}^2}+{y^2}}+\sqrt{{{(x-2)}^2}+{{(y-2)}^2}}$的最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角三角形ABC中,∠C=90°,AB=2,AC=1,若$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}$•$\overrightarrow{CB}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复平面内有A,B两点,点A对应的复数为2+i,向量$\overrightarrow{AB}$对应的复数为2+3i,则点B对应的复数是4+4i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-my+$\sqrt{3}$m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率kMA与kMB之积为3,则实数m的取值范围是(  )
A.$[{-\sqrt{6},\sqrt{6}}]$B.$({-∞,-\frac{{\sqrt{6}}}{6}})$∪$({\frac{{\sqrt{6}}}{6},+∞})$C.$({-∞,-\frac{{\sqrt{6}}}{6}}]$∪$[{\frac{{\sqrt{6}}}{6},+∞})$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=4x+2x+1+1的定义域与值域.

查看答案和解析>>

同步练习册答案