精英家教网 > 高中数学 > 题目详情

【题目】分别根据下列条件,求双曲线的标准方程.
(1)右焦点为 ,离心率e=
(2)实轴长为4的等轴双曲线.

【答案】
(1)解:根据题意,因为右焦点为 ,所以双曲线焦点在x轴上,且c=

又离心率e= = ,所以a=2,

则b2=c2﹣a2=1,

所以所求双曲线的标准方程为: ﹣y2=1


(2)解:因为实轴长为4,所以2a=4,即a=2,

所以由等轴双曲线得b=a=2,

当焦点在x轴上时,所求双曲线的标准方程为: =1,

当焦点在y轴上时,所求双曲线的标准方程为: =1


【解析】(1)根据题意,分析可得:双曲线焦点在x轴上,且c= ,由离心率公式可得a的值,结合双曲线的几何性质可得b的值,将a、b的值代入计算可得答案;(2)根据题意,分析可得b=a=2,分双曲线的焦点在x轴、y轴上两种情况讨论,分别求出双曲线的方程,即可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=x2的图象在点(x0 , x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足(
A.x0∈(
B.x0∈(1,
C.x0∈(0,
D.x0∈( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在这个正方体中,

平行;
是异面直线;
是异面直线;
是异面直线;
以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=4y焦点为F,点A,B,C为该抛物线上不同的三点,且满足 + + =
(1)求|FA|+|FB|+|FC|;
(2)若直线AB交y轴于点D(0,b),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有除颜色外其余均相同的12个小球,从中随机取出1个球,取出红球的概率为 ,取出黑球的概率为 ,取出白球的概率为 ,取出绿球的概率为 .求:
(1)取出的1个球是红球或黑球的概率;
(2)取出的1个球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的2×2列联表:

及格

不及格

合计

很少使用手机

20

6

26

经常使用手机

10

14

24

合计

30

20

50


(1)判断是否有97.5%的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,则此二人适合结为学习上互帮互助的“学习师徒”,记X为两人中解出此题的人数,若X的数学期望E(X)=1.4,问两人是否适合结为“学习师徒”? 参考公式及数据: ,其中n=a+b+c+d.

P(K2≥K0

0.10

0.05

0.025

0.010

K0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是(
A.1个
B.2个
C.3个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截的线段中点M在直线x+y-3=0上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从3名男生a,b,c和2名女生d,e中任选3名代表参加学校的演讲比赛,则男生a和女生d至少有一人被选中的概率为

查看答案和解析>>

同步练习册答案