精英家教网 > 高中数学 > 题目详情
6.函数y=$\frac{1}{2}$(2x-2-x)的反函数是y=log2(x+$\sqrt{{x}^{2}+1}$),(x∈R).

分析 本题考查求反函数的方法,目标明确,思路清晰,下手容易,但要解出x,不是很简单,需要在等式的两侧同乘2x,使原函数的解析式变为关于2x的二次方程,然后先解出2x再利用指对互化解出x

解答 解:依题意,由y=$\frac{1}{2}$(2x-2-x)两边同乘2x得:
(2x)y=$\frac{1}{2}$[(2x2-1],即(2x2-2y•2x-1=0,
解得:2x=y+$\sqrt{{y}^{2}+1}$,或2x=y-$\sqrt{{y}^{2}+1}$,
∵ex>0,
∴2x=y+$\sqrt{{y}^{2}+1}$,
由此得:x=log2(y+$\sqrt{{y}^{2}+1}$)
∴函数y=$\frac{1}{2}$(2x-2-x)的反函数是y=log2(x+$\sqrt{{x}^{2}+1}$),(x∈R),
故答案为:y=log2(x+$\sqrt{{x}^{2}+1}$),(x∈R)

点评 本题思路简捷,但解方程y=$\frac{1}{2}$(2x-2-x)得x的过程是个难点,本题通过两侧同乘2x,使原函数的解析式变为关于2x的二次方程,方法自然,也是熟悉的路子,得出2x后注意利用2x>0舍去不满足条件的式子.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是公比为q的等比数列,Sn是其前n项和,且S4,S10,S7成等比数列.
(1)求证:a2 ,a8,a5 成等差数列;
(2)以a2 ,a8,a5为前三项的等差数列的第四项是不是数列{an}中的一项?若是,求这一项;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解方程:cos(x-$\frac{π}{4}$)=sin(x-$\frac{π}{4}$)-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在△ABC中,b=2,c=$\sqrt{3}$,c=60°,则∠A=(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若(2a+1)${\;}^{\frac{3}{4}}$<(3-5a)${\;}^{\frac{3}{4}}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)若x∈[$\frac{1}{2}$,4],求f(x)=(log2$\frac{x}{2}$)•(log2$\frac{x}{4}$)的最大值和最小值;
(2)若x∈[-1,2],求g(x)=($\frac{1}{2}$)x2-2x-1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程x-tanx=0的实根个数是(  )
A.0B.1C.2D.无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A={x|x>1,x∈R},B={x|x≥5,x∈R}.
(1)判断2分别与A,B的关系;
(2)确定A,B之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,且Sn=2-$\frac{1}{{2}^{n-1}}$.
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an ,求证:$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$=-2(n∈N*,n≥2)

查看答案和解析>>

同步练习册答案