精英家教网 > 高中数学 > 题目详情
已知a,b,c∈R,则下列推证中正确的是( )
A.a>b⇒am2>bm2
B.
C.
D.
【答案】分析:根据不等式两边同乘以0、负数判断出A、B不对,再由不等式两边同乘以正数不等号方向不变判断C对、D不对.
解答:解:A、当m=0时,有am2=bm2,故A不对;B、当c<0时,有a<b,故B不对;
C、∵a3>b3,ab>0,∴不等式两边同乘以(ab)3的倒数,得到,故C正确;
D、∵a2>b2,ab>0,∴不等式两边同乘以(ab)2的倒数,得到,故D不对.
故选C.
点评:本题考查了不等式两边同乘以一个数对应的性质应用,注意次数与零的关系,即乘以负数不等号改变方向,乘以正数不等号不改变方向等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

50、已知a,b,c∈R,证明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R+且满足a+2b+3c=1,则
1
a
+
1
2b
+
1
3c
的最小值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2
1
3

(2)a,b,c为互不相等的正数,且abc=1,求证:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是(  )

查看答案和解析>>

同步练习册答案