精英家教网 > 高中数学 > 题目详情

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

【答案】(1);(2).

【解析】

(1)根据公式计算出,可得;

(2)根据可得,再根据函数为增函数可得答案.

1)因为与温度可以用线性回归方程来拟合,设

所以

关于的线性回归方程为

2)由(1)可得

于是产卵数关于温度的回归方程为,

时,

时,

因为函数为增函数,

所以,气温在之间时,一只该品种昆虫的产卵数的估计范围是内的正整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某经销商从某养殖场购进某品种河蟹,并随机抽取了 100只进行统计,按重量分类统计,得到频率分布直方图如下:

1)记事件为“从这批河蟹中任取一只,重量不超过120克”,估计

2)试估计这批河蟹的平均重量;

3)该经销商按有关规定将该品种河蟹分三个等级,并制定出销售单价如下:

等级

特级

一级

二级

重量

单价(元/只)

40

20

10

试估算该经销商以每千克至多花多少元(取整)收购这批河蟹,才能获利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,

(1)求{an}的通项公式;

(2)设bn= ,求数列{bn}的前项的和Tn

(3)是否存在自然数m,使得 <Tn对一切nN*恒成立?若存在,求出m的值;

若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,长为的三条线段均可以构成三角形,则正实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n为平面α外两条直线,其在平面α内的射影分别是两条直线m1和n1,给出下列4个命题:①m1∥n1m∥n;②m∥nm1与n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点在线段上移动,有下列判断:①平面平面;②平面平面;③三棱锥的体积不变;④平面.其中,正确的是______.(把所有正确的判断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=6cos2sinωx3ω0)在一个周期内的图象如图所示,A为图象的最高点,BC为图象与x轴的交点,且△ABC为正三角形

1)求ω的值及函数fx)的表达式;

2)若fx0,且x0∈(),求fx0+1)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数是自然对数的底数)在的定义域上单调递增,则称函数具有性质.下列函数中所有具有性质的函数的序号为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种掷骰子走跳棋的游戏:棋盘上标有第0站、第1站、第2站、、第100站,共101站,设棋子跳到第n站的概率为,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次.若掷出奇数点,棋子向前跳一站;若掷出偶数点,棋子向前跳两站,直到棋子跳到第99(获胜)或第100(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的游戏玩具,它的六个面分别标有点数123456)

(1),并根据棋子跳到第n站的情况,试用表示

(2)求证:为等比数列;

(3)求玩该游戏获胜的概率.

查看答案和解析>>

同步练习册答案