精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.

(1)求证DM∥平面APC;
(2)求证平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.
(3)

试题分析:
(1)从平面内找一条与平行的直线,根据题意可知, 的中位线,有,则证明.
(2)要证面面垂直得有线面垂直,根据题意可证,从而得到,进而有,最终可证.
(3)首先得做出二面角的平面角,所以过,垂足为,连接,猜想为二面角的平面角,根据二面角的平面角定义,只需证明 ,显然根据已知以及(1)中的结论,可证平面,则可证明猜想.将放入中,即可求其正弦值.
证明中点, 中点,
中,有,
,
 ∥平面                                       
(2)证明为正三角形,且中点,
又由(1)知, .             
                         
                             
                         
                   
(3)

,垂足为,连接, 
中点,
,又由(2)知平面
,平面,
平面,                         
为二面角的平面角         
,中点,,又由(2)平面,∴
 ,中点,为正三角形,



∴在
即二面角的正弦值为.          
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2011•湖北)如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(1)当CF=1时,求证:EF⊥A1C;
(2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形ABCD中,,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转,得到梯形

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的几何体中,四边形为正方形,四边形为等腰梯形,
(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是圆的直径,点是圆上异于的点,直线 分别为的中点。

(1)记平面与平面的交线为,试判断与平面的位置关系,并加以说明;
(2)设(1)中的直线与圆的另一个交点为,且点满足,记直线
平面所成的角为异面直线所成的锐角为,二面角的大小为
①求证:
②当点为弧的中点时,,求直线与平面所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设b,c表示两条直线,α,β表示两个平面,则下列命题正确的是(  )
A.若b?α,c∥α,则c∥b
B.若b?α,b∥c,则c∥α
C.若c?α,α⊥β,则c⊥β
D.若c?α,c⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于(   )
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为 _________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱的侧棱在下底面的射影平行,若与底面所成角为,且,则的余弦值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案