精英家教网 > 高中数学 > 题目详情

某工厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少时,零件的实际出厂单价恰为51元;
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1 000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本

(1)设订购x个,单价为51元.
60-(x-100)×0.02=51,
∴x=550.
(2)当0<x≤100且x∈Z时,P=60;
当100<x≤550且x∈Z时,
P=60-(x-100)×0.02
=62-0.02x;
当x>550且x∈Z时,P=51.
∴P=
(3)订购500个零件,
利润为500×[(62-0.02×500)-40]=6 000(元);
订购1 000个零件,利润为
1 000×(51-40)=11 000(元).  

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(I)求函数上的最小值;
(II)对一切恒成立,求实数的取值范围;
(III)求证:对一切,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)当  时,求函数  的最小值;
(Ⅱ)当  时,讨论函数  的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

温州某私营公司生产一种产品,根据历年的情况可知,生产该产品每天的固定成本为14000元,每生产一件该产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该公司的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若函数处取得极小值是,求的值;  
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数上有且只有一个极值点, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的周长为,且
(1)求边AB的长;
(2)若△ABC的面积为,求角C的度数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本小题满分12分)
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,f(x)>0,
当x∈(-∞,-2)∪(6,+∞)时,f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在区间[1,10]上的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在R上的函数
(1)f(x)可能是奇函数吗?
(2)当a=1时,试研究f(x)的单调性

查看答案和解析>>

同步练习册答案