【题目】如图,四棱锥中,底面是平行四边形,,,平面.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)根据菱形对角线互相垂直及平面ABCD,由线面垂直的判定定理得到平面PBD;
(2)可直接作出线面角用几何法求之,也可建立空间直角坐标系用向量法求之.
(Ⅰ)底面ABCD是平行四边形且,
是菱形,即,
又平面ABCD,得,
所以平面PBD.
(Ⅱ)方法一(几何法):
取BC的中点Q,
连结PQ,DQ,交AC于点G,
过点G作,连HC,
在平行四边形ABCD中且
是正三角形,即点G为重心,
又平面ABCD,得,又,
即平面PDQ,所以面面PDQ,
由作法知,平面PBC,
所以就是直线AC与平面PBC所成的角,
设,则,再由相似求得
在,,
所以直线AC与平面PBC所成角的正弦值是.
方法二(坐标法):
取PB的中点Q,以O为原点,分别以OA,OB,OQ为轴建立空间直角坐标系,
设,则,,,,,
,,,
设平面PBC法向量,
则,
取,
记直线AC与平面PBC所成角为,
得,
所以直线AC与平面PBC所成角的正弦值是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+acosx.
(1)求函数f(x)的奇偶性.并证明当|a|≤2时函数f(x)只有一个极值点;
(2)当a=π时,求f(x)的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:万元/平方米,进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价(单位:万元平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年1月至2019年1月).
(1)试估计该市市民的平均购房面积.
(2)现采用分层抽样的方法从购房面积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.
(3)根据散点图选和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到0.001)./span>
参考数据:,,,,,,,,
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列四个结论:
①函数的最小正周期是;
②函数在区间上是减函数;
③函数的图象关于直线对称;
④函数的图象可由函数的图象向左平移个单位得到其中所有正确结论的编号是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为F1F2,右顶点为A,P为椭圆C上任意一点.已知的最大值为3,最小值为2.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于MN两点(MN不是左右顶点),且以MN为直径的圆过点A.求证:直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研团队研发了一款快速检测某种疾病的试剂盒.为了解该试剂盒检测的准确性,质检部门从某地区(人数众多)随机选取了位患者和位非患者,用该试剂盒分别对他们进行检测,结果如下:
(1)从该地区患者中随机选取一人,对其检测一次,估计此患者检测结果为阳性的概率;
(2)从该地区患者中随机选取人,各检测一次,假设每位患者的检测结果相互独立,以表示检测结果为阳性的患者人数,利用(1)中所得概率,求的分布列和数学期望;
(3)假设该地区有万人,患病率为.从该地区随机选取一人,用该试剂盒对其检测一次.若检测结果为阳性,能否判断此人患该疾病的概率超过?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?
比较了解 | 不太了解 | 合计 | |
理科生 | |||
文科生 | |||
合计 |
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(i)求抽取的文科生和理科生的人数;
(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com