分析 (Ⅰ)由题意可得$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{n-1}}$+2,运用等差数列的通项公式可得,Sn=$\frac{1}{2n}$,由an=Sn-Sn-1,即可得到数列{an}、{bn}的通项公式;
(Ⅱ)求得f(n)=$\frac{n+1}{(n+2)(n+5)}$=$\frac{1}{(n+1)+\frac{4}{n+1}+5}$,由基本不等式即可得到f(n)的最大值及相应的n值.
解答 解:(Ⅰ)由题意可得$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{n-1}}$+2,
可得$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{1}}$+2(n-1)=2n,
即为Sn=$\frac{1}{2n}$,则an=Sn-Sn-1=$\frac{1}{2n}$-$\frac{1}{2(n-1)}$
=-$\frac{1}{2}$•$\frac{1}{(n-1)n}$;bn=2(1-n)an=$\frac{1}{n}$;
(Ⅱ)f(n)=$\frac{{b}_{n+2}}{(n+5){b}_{n+1}}$=$\frac{n+1}{(n+2)(n+5)}$
=$\frac{1}{(n+1)+\frac{4}{n+1}+5}$,
由(n+1)+$\frac{4}{n+1}$≥2$\sqrt{(n+1)•\frac{4}{n+1}}$=4,
当且仅当n=1时,取得等号.
即有f(n)≤$\frac{1}{4+5}$=$\frac{1}{9}$,
则f(n)的最大值为$\frac{1}{9}$及相应的n=1.
点评 本题考查数列的通项的求法,考查函数的最值的求法,注意运用基本不等式,以及数列的通项和前n项和的关系,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $(\frac{1}{3},1)$ | B. | $[\frac{3}{4},1)$ | C. | $(\frac{1}{3},\frac{3}{4})$ | D. | $(\frac{1}{3},\frac{3}{4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com