精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x2+1,g(x)=x+a,?x1∈[-1,2],?x2∈[1,2],f(x1)≥g(x2),则实数a的取值范围为(-∞,0].

分析 由?x1∈[-1,2],都?x2∈[1,2],使得f(x1)≥g(x2),可得f(x)=x2+1在x1∈[-1,2]的最小值不小于g(x)=ax+2在x2∈[1,2]的最小值,构造关于a的不等式组,可得结论.

解答 解:当x1∈[-1,2]时,由f(x)=x2+1得,对称轴是x=0,
f(0)=1是函数的最小值,
当x2∈[1,2]时,g(x)=x+a为增函数,
∴g(1)=a+1是函数的最小值,
又∵?x1∈[-1,2],都?x2∈[1,2],使得f(x1)≥g(x2),
可得f(x)=x2+1在x1∈[-1,2]的最小值不小于g(x)=ax+2在x2∈[1,2]的最小值,
即1≥a+1,
解得:a∈(-∞,0],
故实数a的取值范围是(-∞,0],
故答案为:(-∞,0]

点评 本题考查的知识是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在等差数列{an}中,a4a7=-8,a3=4,且a8为偶数.
(1)求数列{an}的通项公式;
(2)设bn=($\sqrt{2}$)${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\sqrt{x-1}+\frac{1}{x+2}$的定义域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α是第三象限角,且满足$\sqrt{6}$sinα+cosα=$\sqrt{5}$,则tanα=(  )
A.$\sqrt{10}$-$\sqrt{6}$B.$\sqrt{6}$-$\sqrt{5}$C.2$\sqrt{6}$-$\sqrt{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(3x)=4xlog23+233,则f(2)+f(4)+f(8)+f(16)=972.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设p:f(x)=2x2+mx+1在(0,+∞)内单调递增,q:m≥-5,则¬q是¬p的充分不必要条件,命题“?x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m的取值范围m≤-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={y|y=3x+1},N={y|y=log3x+1},则有(  )
A.M=NB.M⊆NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{3}$x3+x2+ax+1(a∈R),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:(log43+log83)$\frac{lg2}{lg3}$+log535-2log5$\frac{7}{3}$+log57-log51.8.

查看答案和解析>>

同步练习册答案