精英家教网 > 高中数学 > 题目详情

数列满足,.
(1)求证:为等差数列,并求出的通项公式;
(2)设,数列的前项和为,对任意都有成立,求整数的最大值.

(1)(2)18

解析试题分析:(1)要证明是等差数列,只需证明是常数,所以根据题意,利用,化简,即可证明.
(2)将(1)中结论代入,而后设出,根据题意只需找到的最小值,令最小值大于.所以得判断数列的增减性,利用,放缩判断其与0的大小关系.而后根据,可得结论.
试题解析:(1)      
 
 
为首次为-2,公差为-1的等差数列
  
 
(2) 
= 
=     
   ∴为单调递增数列

 又所以的最大值为18
考点:等差数列的证明;放缩法判断数列的增减性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求证:数列是等差数列;
(2)求前n项和Sn通项an.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,其前项和为,等比数列 的各项均为正数,,公比为,且.
(1)求; (2)设数列满足,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且,数列为等差数列,且.
(1)求数列的通项公式;
(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为,且,令.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)若,用数学归纳法证明是18的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列中,其前项和为,且.
(1)求数列的通项公式;
(2)设是数列的前项和,是数列的前项和,求证:.

查看答案和解析>>

同步练习册答案