精英家教网 > 高中数学 > 题目详情

【题目】已知自变量为的函数的极大值点为为自然对数的底数.

1)若,证明:有且仅有2个零点;

2)若为任意正实数,证明:.

【答案】1)证明见解析;(2)证明见解析

【解析】

1)当时,,求导得,令,再次求导,可判断单调递减,又,故上单调递增;在上单调递减;求得,再判断,结合零点存在定理判断,有且仅有2个零点;

(2)对求导可得,又,故可判断上单调递增;在上单调递减;故,所求问题转化为

,观察知为等差乘以等比数列的形式,结合错位相减法化简即可求证;

解:(1)由题知:

,令

单调递减,又∵

上单调递增;在上单调递减;所以

又因为

所以上各恰有零点,即有且仅有2个零点.

2)由题知

因此

上单调递增;在上单调递减;

因此

,所以

,所以

所以

所以

所以

因此,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为正三角形,四边形ABCD为直角梯形,//,平面平面ABCD,点EF分别为ADCP的中点,.

1)证明:直线//平面PAB

2)求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若,求直线的极坐标方程;

2)若直线的斜率为,直线与曲线相交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物是用户使用手机或电脑对所消费的商品或服务进行网络账务支付的一种服务方式,外卖、购物、买票等等我们生活的各个方面都可以通过网上来实现,某网络公司通过随机问卷调查,得到不同年龄段的网民在网上购物的情况.并从参与调查者中随机抽取了.经统计得到如下表格:

年龄()

频数

在网上购物的人数

若把年龄大于或等于而小于岁的视为青少年,把年龄大于或等于而小于岁的视为中年.把年龄大于或等于岁的视为老年,将频率视为概率.求:

1)在青少年,中年,老年中,哪个群休网上购物的概率最大?

2)现从某市青少年网民(人数众多)中随机抽取人,设其中网上购物的人数为.求随机变量的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,侧面为等边三角形,侧棱.

1)求证:平面平面

2)求三棱锥外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年初,某高级中学教务处为了解该高级中学学生的作文水平,从该高级中学学生某次考试成绩中按文科、理科用分层抽样方法抽取人的成绩作为样本,得到成绩频率分布直方图如图所示,,参考的文科生与理科生人数之比为,成绩(单位:分)分布在的范围内且将成绩(单位:分)分为六个部分,规定成绩分数在分以及分以上的作文被评为“优秀作文”,成绩分数在50分以下的作文被评为“非优秀作文”.

1)求实数的值;

2)(i)完成下面列联表;

文科生/

理科生/

合计

优秀作文

6

______

______

非优秀作文

______

______

______

合计

______

______

400

ii)以样本数据研究学生的作文水平,能否在犯错误的概率不超过的情况下认为获得“优秀作文”与学生的“文理科“有关?

注:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.

1)求甲、乙两位同学总共正确作答3个题目的概率;

2)若甲、乙两位同学答对题目个数分别是,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多1年的年入流量超过120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电量最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

同步练习册答案