精英家教网 > 高中数学 > 题目详情
已知l∥α,且l的方向向量为u=(2,m,1),平面α的法向量为v=(1,,2),则m=     .
-8
由l∥α可推出u⊥v,列出方程,求得m.
∵l∥α,∴u⊥v,∴u·v=0,
即2×1+m×+1×2=0,解得m=-8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知平面四边形中,的中点,
.将此平面四边形沿折成直二面角
连接,设中点为

(1)证明:平面平面
(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E为CD上一点,且CE=3DE.

(1)求证:AE⊥平面SBD.
(2)M,N分别为线段SB,CD上的点,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,确定M,N的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则点O到平面ABC1D1的距离为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l⊥平面α,直线l的方向向量为s,平面α的法向量为n,则下列结论正确的是(  )
A.s=(1,0,1),n=(1,0,-1)
B.s=(1,1,1),n=(1,1,-2)
C.s=(2,1,1),n=(-4,-2,-2)
D.s=(1,3,1),n=(2,0,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为(  )
A.aB.aC.aD.a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若向量a=(1,λ,2),b=(2,-1,2)且ab的夹角的余弦值为,则λ=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点的外接圆的圆心,且,则的内角等于(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案