精英家教网 > 高中数学 > 题目详情

【题目】在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为_____

【答案】

【解析】

设正四棱柱的高为h,底面边长为a,用h表示出a,写出正四棱柱容器的容积,利用导数求出V取最大值时对应的h值.

设正四棱柱的高为h,底面边长为a,如图所示;

h2+2a2=(2×22

所以a28h2

所以正四棱柱容器的容积为

Va2h=(8h2hh3+8hh04);

求导数得Vh2+8

V′=0,解得h

所以h0)时,V′>0Vh)单调递增;

h4)时,V′<0Vh)单调递减;

所以h时,V取得最大值.

所以要使该容器所盛液体尽可能多,容器的高应为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形,底面的中点.

1)求证:

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(其中)的图象如图所示,为了得到的图象,则只要将的图象上所有的点(

A.向左平移个单位长度,纵坐标缩短到原来的,横坐标不变

B.向左平移个单位长度,纵坐标伸长到原来的3倍横坐标不变

C.向右平移个单位长度,纵坐标缩短到原来的,横坐标不变

D.向右平移个单位长度,纵坐标伸长到原来的3倍,横坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2.

1)设1箱零件人工检验总费用为元,求的分布列;

2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求的值;

2)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在极坐标系中,曲线C1是以C140)为圆心的半圆,曲线C2是以为圆心的圆,曲线C1C2都过极点O

1)分别写出半圆C1C2的极坐标方程;

2)直线l与曲线C1C2分别交于MN两点(异于极点O),PC2上的动点,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面问题中.已知:数列的前项和为,且   .求:对大于1的自然数,是否存在大于2的自然数,使得成等比数列.若存在,求的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:上任意一点到两个焦点的距离和为4,且离心率为

1)求椭圆的方程.

2)过作互相垂直的两条直线分别与椭圆交于,设中点为中点为,试探究直线是否过定点?若是,求出该定点;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

查看答案和解析>>

同步练习册答案