【题目】在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为_____.
科目:高中数学 来源: 题型:
【题目】数(其中)的图象如图所示,为了得到的图象,则只要将的图象上所有的点( )
A.向左平移个单位长度,纵坐标缩短到原来的,横坐标不变
B.向左平移个单位长度,纵坐标伸长到原来的3倍横坐标不变
C.向右平移个单位长度,纵坐标缩短到原来的,横坐标不变
D.向右平移个单位长度,纵坐标伸长到原来的3倍,横坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为元,求的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在点处的切线方程为,求的值;
(2)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在极坐标系中,曲线C1是以C1(4,0)为圆心的半圆,曲线C2是以为圆心的圆,曲线C1、C2都过极点O.
(1)分别写出半圆C1,C2的极坐标方程;
(2)直线l:与曲线C1,C2分别交于M、N两点(异于极点O),P为C2上的动点,求△PMN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,②,③这三个条件中任选一个,补充在下面问题中.已知:数列的前项和为,且, .求:对大于1的自然数,是否存在大于2的自然数,使得,,成等比数列.若存在,求的最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:上任意一点到两个焦点的距离和为4,且离心率为.
(1)求椭圆的方程.
(2)过作互相垂直的两条直线分别与椭圆交于,和,,设中点为,中点为,试探究直线是否过定点?若是,求出该定点;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自,,各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com