精英家教网 > 高中数学 > 题目详情
直线l的极坐标方程为2ρcosθ=ρsinθ+3,圆C的极坐标方程为ρ=2
2
sin(θ+
π
4
)
.则直线l和圆C的位置关系为(  )
分析:将直线与圆的方程化为直角坐标方程,再利用圆心到直线的距离与半径比较,即可得结论.
解答:解:∵直线l的极坐标方程为2ρcosθ=ρsinθ+3,圆C的极坐标方程为ρ=2
2
sin(θ+
π
4
)

∴直线l的直角坐标方程为2x-y-3=0,圆C的直角坐标方程为ρ=2sinθ+2cosθ,即(x-1)2+(y-1)2=2.
∵圆心到直线的距离为d=
|2-1-3|
5
=
2
5
5
2

∴直线l和圆C相交
∵圆心(1,1)不满足2x-y-3=0
∴直线l和圆C相交但不过圆心
故选A.
点评:本题以曲线的极坐标方程为载体,考查直线与圆的位置关系,解题的关键是将直线与圆的方程化为直角坐标方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)选修4-4:坐标系与参数方程
已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:ρ=
10
2
sin(θ-
π
4
)
,点P(2cosα,2sinα+2),参数α∈[0,2π].
(Ⅰ)求点P轨迹的直角坐标方程;
(Ⅱ)求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C1的参数方程为
x=4cosθ
y=4sinθ
(θ为参数,且0≤θ≤2π),点M是曲线C1上的动点.
(Ⅰ)求线段OM的中点P的轨迹的直角坐标方程;
(Ⅱ)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,若直线l的极坐标方程为ρcosθ-ρsin+1=0(ρ>0),求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在极坐标系中,已知直线l的极坐标方程为ρsin(θ+
π
4
)=1+
2
,圆C的圆心是C(
2
π
4
)
,半径为
2

(1)求圆C的极坐标方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=cos?
y=
3
sin?
(?为参数),直线l的极坐标方程为ρcos(?-
π
6
)=
6
.点P在曲线C上,则点P到直线l的距离的最小值为
 

查看答案和解析>>

同步练习册答案