精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax-lnx,(a∈R),
(1)是否存在实数a,当x∈(0,e](e是自然常数)时,函数f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(2)当x∈(0,e]时,证明:e2x2-$\frac{5}{2}$x>(x+1)lnx.

分析 (1)求出函数f(x)的导数,通过讨论a的范围,求出函数的单调区间,从而求出满足条件的a的值即可;
(2)令F(x)=e2x-lnx,求出F(x)的最小值,令ω(x)=$\frac{lnx}{x}$+$\frac{5}{2}$,求出ω(x)的最大值,从而证出结论即可.

解答 解:(1)假设存在实数a,使f(x)=ax-lnx,(x∈(0,e])有最小值3,$f'(x)=\frac{ax-1}{x}$
①当a≤0时,f(x)在(0,e]上单调递减,f(x)min(x)=f(e)=ae-1=3,
a=$\frac{4}{e}$(舍去),
②当0<$\frac{1}{a}$<e时,f(x)在(0,$\frac{1}{a}$)上单调递减,在($\frac{1}{a}$,e]上单调递增,
∴$f{(x)_{min}}=f(\frac{1}{a})=1+lna=3$,a=e2,满足条件.
③当$\frac{1}{a}$≥e时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,
a=$\frac{4}{e}$(舍去),
综上,存在实数a=e2,使得x∈(0,e]时,f(x)有最小值3;
(2)令F(x)=e2x-lnx,由(1)得:F(x)min=3,
令ω(x)=$\frac{lnx}{x}$+$\frac{5}{2}$,则ω′(x)=$\frac{1-lnx}{{x}^{2}}$,
令ω′(x)>0,解得:0<x<e,故ω(x)在(0,e]递增,
∴ω(x)max=ω(e)=3,
∴e2x2-$\frac{5}{2}$x>(x+1)lnx.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及放假分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,一个长为5、宽为3的矩形被平行于边的两条直线所分割,其中矩形的左上角是一个是一个边长为x的正方形
(1)若图中阴影部分的面积为S,试写出S关于x的函数解析式,并标明自变量x的取值范围;
(2)若(1)中的函数解析式为S(x),求出S(x)的最小值,并指明S(x)取得最小值时对应的自变量x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x+y-2=0和x-y-4=0的交点为(  )
A.(3,-1)B.(-3,-1)C.(-3,1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知过点M(-2,1)的直线l与x,y轴正半轴分别交与A、B两点,且S△ABO=$\frac{1}{2}$,求直线l的方程.(结果用直线的一般方程表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.己知函数f(x)=x3-3x,若过点A(1,m)可作曲线y=f(x)的三条切线,则实数m的取值范围是(  )
A.-1<m<1B.-4<m<4C.-1<m<-2D.-3<m<-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数$f(x)=\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则f(f(-4))=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知偶函数f(x)的定义域为(-∞,0)∪(0,+∞),且对任意正实数x1,x2(x1≠x2)恒有(x1-x2)[f(x1)-f(x2)]>0,则一定有(  )
A.f(3)>f(-3)B.f(-3)>f(-5)C.f(-30.3)>f(0.33D.f(log32)>f(-log23)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P1(a1,b1),P(a2,b2),…Pn(an,bn)(n∈N*)在函数y=log${\;}_{\frac{1}{2}}$x的图象上.
(1)若数列{bn}是等差数列,求证:数列{an}是等比数列;
(2)若数列{an}的前n项和Sn=1-2-n,过点Pn,Pn+1的直线与两坐标轴所围图形的面积为cn,求最小的实数t,使得对任意的n∈N*,cn≤t恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π),在$x=\frac{π}{12}$时取得最大值4.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若$f({\frac{2}{3}α+\frac{π}{12}})=\frac{12}{5}$,求sinα.

查看答案和解析>>

同步练习册答案