精英家教网 > 高中数学 > 题目详情

设函数.
(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.

(Ⅰ);(Ⅱ)的取值范围是

解析试题分析:(Ⅰ)求出导数,根据导数大于0求得的单调递增区间.
(Ⅱ)令.利用导数求出的单调区间和极值点,画出其简图,结合函数零点的判定定理找出所满足的条件,由此便可求出的取值范围.
试题解析:(Ⅰ)函数的定义域为

,则使的取值范围为,
故函数的单调递增区间为  
(Ⅱ)∵,
 
,  
,且,
,由.
在区间内单调递减,在区间内单调递增, 
在区间内恰有两个相异实根   
解得:.
综上所述,的取值范围是  
考点:1、导数及其应用;2、函数的零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)当时,不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求f(x)的单调区间;
(II)当时,若存在使得对任意的恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(≠0,∈R)
(Ⅰ)若,求函数的极值和单调区间;
(Ⅱ)若在区间(0,e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,,函数的图像在它们与坐标轴交点处的切线分别为,且.
(1)求常数的值及的方程;
(2)求证:对于函数公共定义域内的任意实数,有
(3)若存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)当时,求函数的最大值;
(2)令)其图象上任意一点处切线的斜率 恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若试确定函数的单调区间;
(Ⅱ)若且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且在点(1,)处的切线方程为
(1)求的解析式;
(2)求函数的单调递增区间;
(3)设函数,若方程有且仅有四个解,求实数a的取值范围。

查看答案和解析>>

同步练习册答案