精英家教网 > 高中数学 > 题目详情
设M1(0,0),M2(1,0),以M1为圆心,|M1M2|为半径作圆交x轴于点M3(不同于M2),记作⊙M1;以M2为圆心,|M2M3|为半径作圆交x轴于点M4(不同于M3),记作⊙M2,…,以Mn为圆心,|MnMn+1|为半径作圆交x轴于点(不同于Mn+1),记作⊙Mn…,当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn,考察下列论断:
当n=1时,|A1B1|=2;
当n=2时,
当n=3时,
当n=4时,
由以上论断推测一个一般的结论:对于n∈N*,|AnBn|=(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二项式(x-
m
x
)6
展开式中不含x的项为-160;设f1(x)=
m
1+x
,定义fn+1(x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
,其中n∈N*
(Ⅰ)求m的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若T2n=a1+2a2+3a3+…+2na2nQn=
4n2+n
4n2+4n+1
,其中n∈N*,试比较9T2n与Qn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
3
+
y2
4
=1
的焦点F与抛物线C:y2=2px(p>0)的焦点关于直线x-y=0对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab≠0,b2≠4a),M是抛物线C上的点,设直线AM,BM与抛物线的另一交点为M1,M2.求证:当M点在抛物线上变动时(只要M1,M2存在且M1≠M2)直线M1M2恒过一定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m1
=(0,x),
n1
=(1,1),
m2
=(x,0),
n2
=(y2,1)(其中x,y是实数),又设向量
m
=
m1
2
n2
n
=
m2
-
2
n1
,且
m
n
,点P(x,y)的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C与y轴的正半轴的交点为M,过点M作一条直线l与曲线C交于另一点N,当|MN|=
4
3
2
时,求直线 l 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设动圆M满足条件p:经过点F(
1
2
,0)
,且与直线l:x=-
1
2
相切;记动圆圆心M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)已知点M1为轨迹C上纵坐标为m的点,以M1为圆心满足条件p的圆与x轴相交于点F、A(A在F的右侧),又直线AM1与轨迹C相交于两个不同点M1、M2,当OM1⊥OM2(O为坐标原点)时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案