精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|cosx|•sinx,给出下列四个说法,其中正确说法是(  )
A.若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z)B.f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增
C.函数f(x)的周期为πD.f(x)的图象关于点$(-\frac{π}{2},0)$成中心对称

分析 若|f(x1)=|f(x2)|,即|$\frac{1}{2}$sin2x1|=|$\frac{1}{2}$sin2x2|,列举反例x1=0,x2=$\frac{π}{2}$时也成立;由二倍角公式化简,再根据正弦函数的单调性判断;根据函数周期性的定义判断;由函数f(x)=|cosx|•sinx,可得函数是奇函数.

解答 解:若|f(x1)=|f(x2)|,即|$\frac{1}{2}$sin2x1|=|$\frac{1}{2}$sin2x2|,则x1=0,x2=$\frac{π}{2}$时也成立,故A不正确;
在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上,f(x)=|cosx|•sinx=$\frac{1}{2}$sin2x,单调递增,故B正确;
∵f(π+x)=|cos(π+x)|•sin(π+x)=|-cosx|•(-sinx)=-f(x)≠f(x),∴函数f(x)的周期不是π,故C不正确;
∵函数f(x)=|cosx|•sinx,∴函数是奇函数,
∴f(x)的图象关于点(0,0)成中心对称,而f(x$+\frac{π}{2}$)=|cos(x+$\frac{π}{2}$)|•sin(x+$\frac{π}{2}$)=|sinx|•cosx
≠f(x),∴点(-$\frac{π}{2}$,0)不是函数的对称中心,故D不正确.
故选:B.

点评 本题考查命题的真假性判断,以及三角函数的单调性、奇偶性、周期性和对称性的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,求sinα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,C=60°,a+b=16,则△ABC的周长l的最小值是(  )
A.22B.23C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.两个平面可以把空间分成3或4部分,三个平面可以把空间分成4或6或7或8部分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察下面几个算式,找出规律:
1+2+1=4;   
1+2+3+2+1=9;   
1+2+3+4+3+2+1=16;
1+2+3+4+5+4+3+2+1=25;

利用上面的规律,请你算出1+2+3+…+99+100+99+…+3+2+1=10000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的偶函数f(x)在x≥0时,f(x)=ex+$\sqrt{x}$,若f(a)<f(a-1),则a的取值范围是
(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式为(  )
A.2n-1B.nC.${(\frac{n+1}{n})^{n-1}}$D.n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC中,角A,B,C所对边的边长分别为a,b,c,若$\frac{cosA}{cosB}$=$\frac{a}{b}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线方程y2=2px(p>0),点A(x1,y1),点B(x2,y2)是抛物线上的两个动点,A、B两点分别位于x轴两侧,已知当OA⊥OB时,x1x2=4p2,y1y2=-4p2,且直线AB过定点(2p,0)
(1)若$\overrightarrow{OA}$$•\overrightarrow{OB}$=3,当p=1时,求x1x2,y1y2的值;
(2)若$\overrightarrow{OA}$$•\overrightarrow{OB}$=t(t≥0),试证明直线AB过定点,并求出定点坐标;
(3)在(2)条件下,kOA为直线OA的斜率,kOB为直线OB的斜率,若弦AB中点M在直线y=2上,证明kOA+KOB为定值.

查看答案和解析>>

同步练习册答案