精英家教网 > 高中数学 > 题目详情
如图,已知F是菱形ABCD的对角线的交点,平面ABCD⊥平面DEC,ED=
3
,DC=1,EC=2,∠DAB=60°
(1)求证:AC⊥平面EDB;
(2)求二面角A-EB-C的余弦值.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由已知得AC⊥BD,DE⊥DC,DE⊥AC,由此能证明AC⊥平面EDB.
(2)以F为原点,FA为x轴,FB为y轴,建立空间直角坐标系,利用向量法能求出二面角A-EB-C的余弦值.
解答: (1)证明:∵F是菱形ABCD的对角线的交点,
∴AC⊥BD,
∵ED=
3
,DC=1,EC=2,∠DAB=60°,
∴DE⊥DC,又平面ABCD⊥平面DEC,
∴DE⊥平面ABCD,∴DE⊥AC,
∴AC⊥平面EDB.
(2)以F为原点,FA为x轴,FB为y轴,建立空间直角坐标系,
∵ED=
3
,DC=1,EC=2,∠DAB=60°,
∴A(
3
2
,0,0),E(0,-
1
2
3
),
B(0,
1
2
,0
),C(-
3
2
,0,0),
EA
=(
3
2
1
2
,-
3
),
EB
=(0,1,-
3
),
EC
=(-
3
2
1
2
,-
3
),
设平面AEB的法向量
n
=(x,y,z),
n
EA
=
3
2
x+
1
2
y-
3
z=0
n
EB
=y-
3
z=0

取z=
3
,得
n
=(
3
,3,
3
),
设平面CEB的法向量
m
=(a,b,c),
m
EB
=b-
3
c=0
m
EC
=-
3
2
a+
1
2
b-
3
c=0

取c=
3
,得
m
=(-
3
,3,
3
),
设二面角A-EB-C的平面角为θ,
cosθ=-|cos<
n
m
>|=-|
-3+9+3
3+9+3
3+9+3
|=-
3
5

∴二面角A-EB-C的余弦值为-
3
5
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:cosα•sinβ=
1
2
[sin(α+β)-sin(α-β)].
    cosα•cosβ=
1
2
[cos(α+β)+cos(α-β)]
    sinα•sinβ=-
1
2
[cos(α+β)-cos(α-β)]
求证:sinθ-sinφ=2cos
θ+φ
2
sin
θ-φ
2

      cosθ+cosφ=2cos
θ+φ
2
cos
θ-φ
2

      cosθ-cosφ=-2sin
θ+φ
2
sin
θ-φ
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,Sn为其前n项的和,且对于任意的n∈N*,都有4Sn=(an+1)2
(1)求a1,a2的值和数列{an}的通项公式;
(2)求数列bn=
1
anan+1
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

“公司加农户”是现代农业发展的一条汇道,政府联络牵头,公司与农户签订合作合同,公司投入部分启动资金,然后公司按合同单价收购农户生产的农产品(在政府监督下,公司不论盈亏,一律按合同价收购).一家蔬菜公司按上述模式与某村合作生产经营大白菜,合同规定直接到菜收购,且必须每天固定收购20吨(使得双方有计划生产和经销),大白菜的收购单价是800元/吨,加入运输成本后单价达到1000元/吨,公司平均以1300元/吨的单价批发,每天批发后,剩余部分再按400元/吨的单价批给二手批发商.公司统计人员记录了两个月(60天)中的以1300元/吨为单价的批发量情况,整理得下表:
日批发量(四舍五入
取近似值,单位:吨)
201918171615141312
频数10119875433
(Ⅰ)估计公司经营白菜当天亏本的概率;
(Ⅱ)估计公司经营白菜当天毛利润(不考虑工资等开支的盈利额)不少于3000元的概率;
(Ⅲ)估计公司每天经营白菜的平均毛利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是函数y=log2x的反函数,
(Ⅰ)求y=f(x)的解析式.
(Ⅱ)若x∈(0,+∞),试分别写出使不等式
(ⅰ)log2x<2x<x2
(ⅱ)log2x<x2<2x成立自变量x的取值范围
(Ⅲ)求不等式loga(x-3)>loga(5-x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,
m
=(cos(x-B),cosB),
n
=(cosx,-
1
2
),f(x)=
m
n
,f(
π
3
)=
1
4

(Ⅰ)求角B的值;
(Ⅱ)若b=
14
BA
BC
=6,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是(  )
A、
2
x±y=0
B、x±
2
y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD与等腰直角△APB所在平面互相垂直,AD∥BC,∠APB=∠ABC=90°,AB=BC=2AD=2,E为PB的中点.
(Ⅰ)求证:直线AE∥平面PCD;
(Ⅱ)求四面体C-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an},前n项和为Sna1+a2=
3
4
a4+a5=6
,则S6=
 

查看答案和解析>>

同步练习册答案