【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自,,各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
【答案】(1)1,2,3;(2).
【解析】
(1)先求得分层抽样的抽样比,由此求得这6件样品中来自,,各车间产品的数量.
(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.
(1)因为样本容量与总体中的个体数的比是,
所以车间产品被选取的件数为,
车间产品被选取的件数为,
车间产品被选取的件数为.
(2)设6件自三个车间的样品分别为:;,,;,.
则从6件样品中抽取的这2件产品构成的所有基本事件为:
,,,,,,,,
,,,,,,,共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件:“抽取的这2件产品来自相同车间”,
则事件包含的基本事件有:
,,,,共4个
所以.
所以这2件商品来自相同车间的概率为.
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.
(1)求图中a的值;
(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:
A试验区 | B试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现y与x具有线性相关关系.
价格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根据上表给出的数据,求出y与x的线性回归方程;
(2)利用(1)中的回归方程,当价格元/kg时,日需求量y的预测值为多少?
(参考公式:线性回归方程,其中,.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知指数函数的图象经过点,在区间的最小值;
(1)求函数的解析式;
(2)求函数的最小值的表达式;
(3)是否存在同时满足以下条件:①;②当的定义域为时,值域为;若存在,求出m,n的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有初中学生1800人,高中学生1200人.为了解全校学生本学期开学以来的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”,按学生的课外阅读时间(单位:小时)各分为5组:,,,,,得其频率分布直方图如图所示.
(1)估计全校学生中课外阅读时间在小时内的总人数约是多少;
(2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求至少有2个初中生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以下命题中:
①三个非零向量,,不能构成空间的一个基底,则,,共面;
②若两个非零向量,与任何一个向量都不能构成空间的一个基底,则,共线;
③对空间任意一点和不共线的三点,,,若,则,,,四点共面
④若,是两个不共线的向量,且,则构成空间的一个基底
⑤若为空间的一个基底,则构成空间的另一个基底;
其中真命题的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com