精英家教网 > 高中数学 > 题目详情

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

【答案】(1)1,2,3;(2).

【解析】

1)先求得分层抽样的抽样比,由此求得这6件样品中来自,,各车间产品的数量.

2)利用列举法,结合古典概型概率计算公式,计算出所求概率.

(1)因为样本容量与总体中的个体数的比是,

所以车间产品被选取的件数为,

车间产品被选取的件数为,

车间产品被选取的件数为.

(2)设6件自三个车间的样品分别为:;,,;,.

则从6件样品中抽取的这2件产品构成的所有基本事件为:

,,,,,,,,

,,,,,,,共15个.

每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.

记事件:“抽取的这2件产品来自相同车间”,

则事件包含的基本事件有:

,,,,共4

所以.

所以这2件商品来自相同车间的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现yx具有线性相关关系.

价格x(元/kg

10

15

20

25

30

日需求量ykg

11

10

8

6

5

1)根据上表给出的数据,求出yx的线性回归方程

2)利用(1)中的回归方程,当价格/kg时,日需求量y的预测值为多少?

(参考公式:线性回归方程,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数的图象经过点在区间的最小值

1)求函数的解析式;

2)求函数的最小值的表达式;

3)是否存在同时满足以下条件:;②当的定义域为时,值域为;若存在,求出mn的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:上单调递减,在上单调递增;

2)记函数的最小值为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有初中学生1800人,高中学生1200人.为了解全校学生本学期开学以来的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”,按学生的课外阅读时间(单位:小时)各分为5组:,得其频率分布直方图如图所示.

1)估计全校学生中课外阅读时间在小时内的总人数约是多少;

2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求至少有2个初中生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以下命题中:

①三个非零向量不能构成空间的一个基底,则共面;

②若两个非零向量与任何一个向量都不能构成空间的一个基底,则共线;

③对空间任意一点和不共线的三点,若,则四点共面

④若是两个不共线的向量,且,则构成空间的一个基底

⑤若为空间的一个基底,则构成空间的另一个基底;

其中真命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移个单位长度后,得到函数,则函数的图象的一个对称中心是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案