【题目】如图,在平面直角坐标系中,已知椭圆:,设是椭圆上任一点,从原点向圆:作两条切线,分别交椭圆于点,.
(1)若直线,互相垂直,且圆心落在第一象限,求圆的圆心坐标;
(2)若直线,的斜率都存在,并记为,.
①求证:;
②试问是否为定值?若是,求出该定值;若不是,请说明理由.
【答案】(1)(2)①证明见解析②.
【解析】
(1)根据题意可知,,又点在椭圆上,列出方程即可求出;
(2)①设过点且与圆相切的切线方程为,根据直线与圆相切可列出关于的一元二次方程,根据韦达定理即可求出,即可证出;
②联立直线与椭圆方程,即可求出,从而得到,由①所得结论即可求出.
(1)设直线,分别与圆相切于点,由几何知识可知,四边形为正方形,所以,又点在椭圆上,即 ,,解得,
而圆心落在第一象限,所以,故圆的圆心坐标为.
(2)①设过点且与圆相切的切线方程为,所以,化简得,
,所以直线,的斜率,为方程的两根,
即,而可得,所以,
即.
②由解得,,所以,
同理可得,,故
由①知,,代入上式可得,
.
故为定值,.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,准线为l,过F的直线与E交于A,B两点,C,D分别为A,B在l上的射影,且,M为AB中点,则下列结论正确的是( )
A.B.为等腰直角三角形
C.直线AB的斜率为D.的面积为4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线顶点在原点,焦点在x轴上,且过点(4,4),焦点为F.
(1)求抛物线的焦点坐标和标准方程;
(2)P是抛物线上一动点,M是PF的中点,求M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照,,,,分成5组,制成如图所示频率分直方图.
(1)求图中的值及这组数据的众数;
(2)已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com