【题目】如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为 .
【答案】
【解析】解:根据已知条件,AB,AD,AQ三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,
设AB=2,则:
A(0,0,0),E(1,0,0),F(2,1,0);
M在线段PQ上,设M(0,y,2),0≤y≤2;
∴ ;
∴cosθ= = ;
设f(y)= , ;
函数g(y)=﹣2y﹣5是一次函数,且为减函数,g(0)=﹣5<0;
∴g(y)<0在[0,2]恒成立,∴f′(y)<0;
∴f(y)在[0,2]上单调递减;
∴y=0时,f(y)取到最大值 .
所以答案是: .
【考点精析】根据题目的已知条件,利用异面直线及其所成的角的相关知识可以得到问题的答案,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
科目:高中数学 来源: 题型:
【题目】设不等式组 所表示的平面区域为Dn , 记Dn内的整点个数为an(n∈N*).(整点即横坐标和纵坐标均为整数的点)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{an}的前n项和为Sn , 且 ,若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣ λ,且数列{bn}是单调递增数列,则实数λ的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn , 且an= (n∈N*). (Ⅰ)若数列{an+t}是等比数列,求t的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记bn= + ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂36名工人年龄数据如图:
工人编号 | 年龄 | 工人编号 | 年龄 | 工人编号 | 年龄 | 工人编号 | 年龄 |
1 | 40 | 10 | 36 | 19 | 27 | 28 | 34 |
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值 和方差s2;
(3)36名工人中年龄在 ﹣s和 +s之间有多少人?所占百分比是多少(精确到0.01%)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =2(cosωx,cosωx), =(cosωx, sinωx)(其中0<ω<1),函数f(x)= ,
(1)若直线x= 是函数f(x)图象的一条对称轴,先列表再作出函数f(x)在区间[﹣π,π]上的图象.
(2)求函数y=f(x),x∈[﹣π,π]的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为 ,且过点( ,1). (Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com