精英家教网 > 高中数学 > 题目详情
已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1,n∈N+
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
1anan+1
,求数列{bn}的前n项和Tn
分析:(I)设等差数列{an}的公差为d,首项为a1,然后取n=1,n=2,将等式化成关于a1与d的方程组,解之即可;
(II)将数列的通项进行化简得bn=
1
anan+1
=
1
2
(
1
2n-1
-
1
2n+1
)
,然后进行求和,消项后可求出数列{bn}的前n项和Tn
解答:解:(Ⅰ)设等差数列{an}的公差为d,首项为a1
在an2=S2n-1中,令n=1,n=2,
a
2
1
=S1
a
2
2
=S3
   即
a
2
1
=a1
(a1+d)2=3a1+3d
      (4分)
解得a1=1,d=2,
∴an=2n-1.(6分)
(Ⅱ)∵bn=
1
anan+1
=
1
2
(
1
2n-1
-
1
2n+1
)
,(8分)
∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
n
2n+1
.  (10分)
点评:本题主要考查了数列的通项公式以及利用裂项求和法求数列的和,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知数列{an}中,若2an=an-1+an+1(n∈N*,n≥2),则下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足数学公式(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:数学公式

查看答案和解析>>

科目:高中数学 来源:2010年北京市朝阳区高考数学一模试卷(理科)(解析版) 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:

查看答案和解析>>

科目:高中数学 来源:2010年北京市朝阳区高考数学一模试卷(文科)(解析版) 题型:解答题

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足(n∈N*).
(Ⅰ)证明数列{xn}是等比数列;
(Ⅱ)把数列{xn}中所有项按如图所示的规律排成一个三角形数表,当x3=8,x7=128时,求第m行各数的和;
(Ⅲ)对于(Ⅱ)中的数列{xn},证明:

查看答案和解析>>

同步练习册答案