精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d是定义在R上的偶函数,且当x∈[1,2]时,该函数的值域为[-2,1].求函数f(x)的解析式.
分析:由f(x)为偶函数可知f(x)=f(-x),故ax3+cx=0恒成立,所以f(x)=bx2+d,由此能够求出函数f(x)的解析式.
解答:解:∵函数f(x)=ax3+bx2+cx+d是定义在R上的偶函数,
∴f(x)=f(-x),即-ax3+bx2-cx+d=ax3+bx2+cx+d
∴ax3+cx=0恒成立,
故f(x)=bx2+d.(4分)
当b=0时,由函数f(x)的值域不是常数知不合题意;(5分)
当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],
所以
f(1)=-2
f(2)=1
b+d=-2
4b+d=1
b=1
d=-3
.(9分)
当b<0,同理可得
f(1)=1
f(2)=-2
b+d=1
4b+d=-2
b=-1
d=2
,(12分)
所以f(x)=x2-3或f(x)=-x2+2.(13分)
点评:本题考查函数的解析式的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案