精英家教网 > 高中数学 > 题目详情
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有的同学发现“任何三次函数都有‘拐点’;任何三次函数都有对称中心;且对称中心就是‘拐点’”.请你根据这一发现判断下列命题:
(1)任意三次函数都关于点(-
b
3a
,f(-
b
3a
))
对称;
(2)存在三次函数,f'(x)=0有实数解x0,(x0,f(x0))点为函数y=f(x)的对称中心;
(3)存在三次函数有两个及两个以上的对称中心;
(4)若函数g(x)=
1
3
x3-
1
2
x2-
5
12
,则g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)=-1006

其中正确命题的序号为(  )
A.(1)(2)(4)B.(1)(2)(3)(4)C.(1)(2)(3)D.(2)(3)
(1)由题意,f′(x)=3ax2+2bx+c(a≠0),∴f″(x)=6ax+2b(a≠0),
∴令f″(x)=0,可得x=-
b
3a
,∴任意三次函数都关于点(-
b
3a
,f(-
b
3a
))
对称,故(1)正确;
(2)由(1)知,x0=-
b
3a
,代入f'(x)=0,可得3a×
b2
9a2
-2b×
b
3a
+c=0
,∴b2=3ac,此时,存在三次函数,f'(x)=0有实数解x0,(x0,f(x0))点为函数y=f(x)的对称中心,故(2)正确;
(3)由(1)知,三次函数有且只有一个对称中心,即不存在三次函数有两个及两个以上的对称中心,故(3)不正确;
(4)∵g(x)=
1
3
x3-
1
2
x2-
5
12
,∴g′(x)=x2-x
∴g″(x)=2x-1
令g″(x)=0,可得x=
1
2
,∴g(1)=-
1
2

g(x)=
1
3
x3-
1
2
x2-
5
12
的对称中心为(
1
2
,-
1
2
)

∴g(x)+g(1-x)=-1
g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)=-1006
,即(4)正确,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若全集U={0,1,2},A={x|ax+1=0}且∁UA={0,1},则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(  )
A.①③④B.①②③C.③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确命题的个数是(  )
(1)平面a内有且仅有一条直线和这个平面外的一条直线l垂直
(2)经过一点和已知直线垂直的平面有且只有一个
(3)经过平面外一点和这个平面平行的直线有且仅有一条
(4)经过平面外一点有且仅有一条直线和这个平面垂直.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列三个命题:①“若x+y=0,则x、y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③已知a、b、c、d是实数,“若a=b,c=d,则a+c=b+d”的逆命题.其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:二次函数f(x)=x2-7x+6在区间[m,+∞)是增函数;q:二次不等式x2-(m-4)x+1-
1
4
m>0
的解集为R.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:关于x的方程4x2+4(m-2)x+1=0无实根,q:关于x的方程x2+mx+1=0的两实根都小于1,若p∧q是真命题,且¬(p∨q)是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.一条直线和一个平面平行,它就和这个平面内的任一条直线平行
B.平行于同一平面的两条直线平行
C.如果一个平面内的无数条直线平行于另一个平面,则这两个平面平行
D.如果一个平面内任何一条直线都平行于另一个平面,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a>0,且a≠1,设P:函数y=logax在区间(0,+∞)内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.
(1)求Q正确时,a的取值范围;
(2)求P与Q有且只有一个正确的充要条件.

查看答案和解析>>

同步练习册答案