精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)的图象是由y=sin2x向右平移 得到,则下列结论正确的是(
A.f(0)<f(2)<f(4)
B.f(2)<f(0)<f(4)
C.f(0)<f(4)<f(2)
D.f(4)<f(2)<f(0)

【答案】A
【解析】解:把y=sin2x向右平移 得到y=sin2(x﹣ )=sin(2x﹣ )的图象,
故f(0)=﹣ ,f(2)=sin(4﹣ ),f(4)=sin(8﹣ ),
故f(0)<f(2)<f(4),
故选:A.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的图象在处的切线方程;

(2)是否存在实数,使得对任意的,都有函数的图象在的图象的下方?若存在,求出最大的整数的值;若不存在,请说明理由;

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的以往各年的宣传费用支出(万元)与销售量(万件)之间有如下对应数据

2

4

5

6

8

4

3

6

7

8

(1)试求回归直线方程;

(2)设该产品的单件售价与单件生产成本的差为(元),若与销售量(万件)的函数关系是,试估计宣传费用支出为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)

(参考数据与公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,是定义在R上的奇函数. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +3(﹣1≤x≤2).
(1)若λ= 时,求函数f(x)的值域;
(2)若函数f(x)的最小值是1,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1) 时,证明:

(2)当时,直线和曲线切于点,求实数的值;

(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)平面直角坐标系中,倾斜角为的直线过点,以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出直线的参数方程(为常数)和曲线的直角坐标方程;

(2)若直线交于两点,且,求倾斜角的值.

(Ⅱ)已知函数.

(1)若函数的最小值为5,求实数的值;

(2)求使得不等式成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

频数

2

12

34

38

10

4

(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;

(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

同步练习册答案