精英家教网 > 高中数学 > 题目详情
20.已知函数y=f(x),对任意的两个不相等的实数x1,x2都有f(x1+x2)=f(x1)•f(x2)成立,且f(0)≠0,则f(-2015)•f(-2014)•…f(-1)f(0)f(1)…•f(2014)•f(2015)的值是(  )
A.0B.1C.2006D.20062

分析 可用赋值法求解.令x2=0,则f(x1)=f(x1)•f(0),所以f(0)=1.令x1=x,x2=-x,则f(0)=f(x)•f(-x)=1,则结果可求.本题为选择题,也可直接令f(x)=ax求解.

解答 解:令x2=0,则f(x1)=f(x1)•f(0),所以f(0)=1.
令x1=x,x2=-x,则f(0)=f(x)•f(-x)=1,
所以f(-20015)•f(-2014)…f(2014)•f(2015)=1
故选B.

点评 本题考查抽象函数的求值问题,解决抽象函数常用方法为赋值法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知P:|$\frac{1-a}{3}$|<2,q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B≠∅,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.C1,C2是以原点为圆心的两个同心圆,C1的半径r1=2,C2的半径r2=6,C1上有一点P,C2上有一点Q,各以每秒1弧度的角速度绕原点旋转,P点按逆时针方向运动,Q点安顺时针方向运动,当t=0时,P点在x轴上,Q点在y轴上,求PQ中点M的运动轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l的极坐标方程为:ρcosθ-ρsinθ+4=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)
(1)写出l与C的直角坐标方程
(2)求C上的点到l距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)${\;}_{\;}{0.064^{{-_{\;}}\frac{1}{3}}}-{({-\frac{4}{5}})^0}+{0.01^{\frac{1}{2}}}$
(Ⅱ)${\;}_{\;}2lg2+3lg5+lg\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数g(x)=lnx+$\frac{1}{x}$.
(1)求g(x)的单调区间和最小值;
(2)若f(x)=g(x)-g($\frac{1}{x}$),证明f(x)在(0,+∞)上有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设log142=a,则log147等于(  )
A.$\frac{a}{2}$B.$\frac{2}{a}$C.1+aD.1-a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=log2(3x2-mx+2)在区间[1,+∞)上单调递增,则实数m的取值范围是(-∞,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合.直线l的参数方程为$\left\{\begin{array}{l}{2+tcosα}\\{1+tsinα}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4cos θ+2sin θ.
(1)写出曲线C的直角坐标方程,并指明C是什么曲线;
(2)设直线l与曲线C相交于P,Q两点,求证|PQ|为定值.

查看答案和解析>>

同步练习册答案