精英家教网 > 高中数学 > 题目详情
5.函数f(x)=ln|x-1|+2cosπx(-2≤x≤4)的所有零点之和等于(  )
A.2B.4C.6D.8

分析 函数f(x)=ln|x-1|+2cosπx的零点,即为函数f(x)=2cosπx与函数g(x)=ln|x-1|的图象交点的横坐标,由图象变化的法则和余弦函数的特点作出函数的图象,由对称性可得答案.

解答 解:f(x)=ln|x-1|+2cosπx的零点,
即为函数f(x)=-2cosπx与函数g(x)=ln|x-1|的图象交点的横坐标,
由图象变化的法则可知:y=ln|x-1|的图象作关于y轴的对称后和原来的一起构成y=ln|x|的图象,
在向右平移1个单位得到y=ln|x-1|的图象
又f(x)=-2cosπx的周期为2,如图所示:
两图象都关于直线x=1对称,且共有A,B,C,D,E,F,6个交点,
由中点坐标公式可得:xA+xF=2,xB+xE=2,xC+xD=2,
故所有交点的横坐标之和为6,
故选:C.

点评 本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow a=({m,1}),\overrightarrow b=({1,n-2}),({m>0,n>0})$若$\overrightarrow a⊥\overrightarrow b$,则$\frac{1}{m}+\frac{2}{n}$的最小值为(  )
A.2$\sqrt{2}$B.$\frac{3}{2}$+$\sqrt{2}$C.3$\sqrt{2}$+2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图所示,则下列结论错误 的一个是(  )
A.甲的极差是29B.甲的中位数是25
C.乙的众数是21D.甲的平均数比乙的大

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数$f(x)=cos(2x+\frac{π}{3})+1$,如下结论中正确的是②③⑤.(写出所有正确结论的编号):
①点$(-\frac{5}{12}π,0)$是函数f(x)图象的一个对称中心;
②直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴; 
③函数f(x)的最小正周期是π;
④函数f(x)在$[-\frac{π}{6},\frac{π}{3}]$上为增函数;
⑤将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙两个人投篮,他们投进篮的概率分别为$\frac{2}{5},\frac{1}{2}$,现甲、乙两人各投篮1次,则两个人都投进的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{9}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率以及频率分布直方图中第四小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中正确的是(  )
A.若p:?x∈R,ex>xe,q:?x0∈R,|x0|≤0,则(¬p)∧q为假
B.x=1是x2-x=0的必要不充分条件
C.直线ax+y+2=0与ax-y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在Rt△ACB中,∠ACB=90°,BC=2AC,分别以A、B为圆心,AC的长为半径作扇形ACD和扇形BEF,D、E在AB上,F在BC上.在△ACB中任取一点,这一点恰好在图中阴影部分的概率是(  )
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的极坐标方程为$\sqrt{3}ρcosθ+ρsinθ-1=0$,曲线C的极坐标方程为ρ=4.
(1)将曲线C的极坐标方程化为普通方程;
(2)若直线l与曲线交于A,B两点,求线段AB 的长.

查看答案和解析>>

同步练习册答案