精英家教网 > 高中数学 > 题目详情
已知实数a满足不等式|a+1|<3,解关于x的不等式:[x-(a+1)](x+1)>0.
【答案】分析:由题意,可先解不等式|a+1|<3,得出a的取值范围,由于[x-(a+1)](x+1)>0相应方程的两根是-1与a+1,故要对此两根的大小作出判断,再写出不等式的解集,可分三类讨论求解出不等式的解集
解答:解:由题意,|a+1|<3得:-3<a+1<3,
∴-4<a<2
∵原不等式为[x-(a+1)](x+1)>0…(2分)
①当-4<a<-2即-1>1+a时,不等式的解的取值范围是x>-1或x<1+a;…(6分)
②当a=-2时,不等式变为(x+1)2>0,解得x∈R,且x≠-1;…(8分)
③当-2<a<2即-1<1+a时,x>1+a或x<-1.…(11分)
综上,当-4<a<-2时,x∈{x|x>-1或x<1+a};
当a=-2时,x∈{x|x∈R,x≠-1};
当-2<a<2时,x∈{x|x>1+a或x<-1}.…(12分)
点评:本题考查一元二次不等式的解法及绝对值不等式的解法,解题的关键是熟练掌握一元二次不等式解法的规律,本题的难点是对不等式相应方程的两根的大小作出比较,此处用到了分类讨论的思想,分类讨论思想通常是在问题求解中出现了不确定性时采用的一种解题的策略,在高中数学解题中经常运用,本题分三类解不等式,易因为考虑不全致错
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•重庆一模)已知实数a满足不等式|a+1|<3,解关于x的不等式:[x-(a+1)](x+1)>0.

查看答案和解析>>

科目:高中数学 来源:河北省冀州中学2007-2008学年度上学期期中考试高三数学(理科)试题 题型:044

已知实数a满足不等式|a+1|<3.解关x的于不等式[x-(a+1)](x+1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a满足不等式|a+1|<3,解关于x的不等式:[x-(a+1)](x+1)>0.

查看答案和解析>>

科目:高中数学 来源:重庆一模 题型:解答题

已知实数a满足不等式|a+1|<3,解关于x的不等式:[x-(a+1)](x+1)>0.

查看答案和解析>>

同步练习册答案