精英家教网 > 高中数学 > 题目详情

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

(1);(2)①当时,,即;②当时,;③当时,;(3)详见解析

解析试题分析:(1)根据题意切线平行于x轴即斜率为0,则对函数求导可得,即,可求出a;(2)根据题意当时,函数就确定下来了,对其求导可得,可研究出函数的单调性情况,为了比较大小可引入一个新的函数,即令,则利用导数对其进行研究可得,而,则可由m与1的大小关系进行分类得出结论;(3)显然两零点均为正数,故不妨设,由零点的定义可得:,即,观察此两式的结构特征可相加也可相减化简得:,现在我们要证明,即证明,也就是.又因为,所以即证明,即.由它的结构可令=t,则,于是.构造一新函数,将问题转化为求此函数的最小值大于零,即可得证.
(1),由题.               4分
(2)当时,,当时,单调递增,当时,单调递减.
由题,令
.                  7分

①当时,,即
②当时,
③当时,.                        10分
(3) ,
,                                   12分
欲证明,即证
因为
所以即证,所以原命题等价于证明,即证:
,则,设
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数处取得极值-2.
(1)求函数的解析式;
(2)求曲线在点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的极值;(2)当时,讨论的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若使得成立,求满足上述条件的最大整数
(3)当时,若对于区间内的任意两个不相等的实数,都有
成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.    [来源:学科

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值;
(2)若,求的取值范围.
(3)证明:  +(n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在x=1处有极小值-1,
(1)试求的值;  (2)求出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设).
(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.

查看答案和解析>>

同步练习册答案