精英家教网 > 高中数学 > 题目详情
11.已知数列{an}中,a1=1,a2=3,an+2+an=an+1,则a2014=(  )
A.-3B.-1C.2D.3

分析 由条件an+2+an=an+1,可得an+2=an+1-an,得到an+6=an,从而确定数列是周期数列,利用数列的周期性即可求解.

解答 解:∵an+2+an=an+1,∴an+2=an+1-an
∴an+3=an+2_an+1=an+1-an-an+1=-an,即an+6=-an+3=an
即数列{an}是周期为6的周期数列.
∴a2014=a335×6+4=a4
∵a1=1,a2=3,an+2=an+1-an
∴a3=a2-a1=3-1=2,
a4=a3-a2=2-3=-1.
故a2014=a4=-1.
故选:B.

点评 本题主要考查数列项的计算,利用条件求出数列是周期数列是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-4x+3<0},B={|x|$\frac{x-4}{2-x}$≥0},则A∩B=(  )
A.[2,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在矩形ABCD中,AD=$\sqrt{5}$,AB=3,E、F分别为AB边、CD边上一点,且AE=DF=l,现将矩形ABCD沿EF折起,使得平面ADFE⊥平面BCFE,连接AB、CD,则所得三棱柱ABE-DCF的侧面积比原矩形ABCD的面积大约多(取$\sqrt{5}$≈2.236)(  )
A.68%B.70%C.72%D.75%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.当a>0,a≠1时,函数f(x)=loga(x-1)+1的图象恒过定点A,若点A在直线mx-y+n=0上,则4m+2n的最小值是(  )
A.4B.$2\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{log_3}x,0<x≤9\\ f(x-4),x>9\end{array}$则$f(13)+2f(\frac{1}{3})$的值为(  )
A.1B.0C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,设△ABC的面积为S,p=$\sqrt{2}$a-S,则p的最大值是$\frac{9\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y2=12x上与焦点的距离等于9的点的坐标(  )
A.$(6,±6\sqrt{2})$B.$(6\sqrt{2},±6)$C.$(12,±6\sqrt{2})$D.$(6\sqrt{2},±12)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-1|+$\frac{1}{2}$|x-3|.
(1)作出函数图象,并求不等式f(x)>2的解集;
(2)设g(x)=$\frac{{x}^{2}+m}{x}$,若对于任意的x1,x2∈[3,5]都有f(x1)≤g(x2)恒成立,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设椭圆C$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,l是右准线,若椭圆上存在一点P使得PF1是P到直线l的距离的3倍,则椭圆的离心率的取值范围是[$\sqrt{7}$-2,1).

查看答案和解析>>

同步练习册答案