精英家教网 > 高中数学 > 题目详情

【题目】已知函数

若曲线在点 处的切线与直线 垂直,求实数的值;

(Ⅱ)讨论函数 的单调性;

(Ⅲ)当 时,记函数 的最小值为 ,求证:

【答案】(1) .

(2) 时, 上单调递增,在上单调递减; 当时, 上单调递增,在上单调递减.

(3)证明见解析.

【解析】分析:(求出根据可求得实数的值;求出分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;由(Ⅱ)可知,当时,函数的最小值利用导数研究函数的单调性,可得当时,从而可得结果.

详解(Ⅰ)由已知可知的定义域为

根据题意可得,

(Ⅱ)

时,由可得

可得

上单调递增,在上单调递减

②当时,

可得

可得

上单调递增,在上单调递减

(Ⅲ)由(Ⅱ)可知,当时,函数的最小值

可得

变化时,的变化情况如表:

-

0

-

极大值

上的唯一的极大值,从而是的最大值点,

时,

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:x∈[1,2], ﹣lnx﹣a≥0,命题q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-7x+60}B={x|4-txt}R为实数集.

1)当t=4时,求ABARB

2)若AB=A,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数的图象在点处的切线平行于轴.

(1)求的值;

(2)求函数的极小值;

(3)设斜率为的直线与函数的图象交于两点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某算法的算法框图如图所示,若将输出的(x,y)值依次记为(x1 , y1),(x2 , y2),…,(xn , yn),…,则程序结束时,共输出(x,y)的组数为(
A.1006
B.1007
C.1008
D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:

满意

一般

不满意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线上,且与直线相切于点

1)求圆C的方程;

2)是否存在过点的直线与圆C交于两点,且的面积为O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)设不等式(x﹣a)(x+a﹣2)<0的解集为N, ,若x∈N是x∈M的必要条件,求a的取值范围.
(2)已知命题:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的5个样本点,数值如下表:

0.25

0.5

1

2

4

16

12

5

2

1

(1)根据散点图判断,哪一个适宜作为关于的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果试建立之间的回归方程.(注意计算结果保留整数)

(3)由(2)中所得设z=+,试求z的最小值。

参考数据及公式如下:

查看答案和解析>>

同步练习册答案