精英家教网 > 高中数学 > 题目详情
已知f(x+1)是定义域为R的偶函数,且x≥1时,f(x)=(
1
2
)x-log2x
,若a∈(1,2),则下列不正确的是(  )
分析:根据条件得到对称性和函数的单调性,然后画出满足条件的图象,结合图象进行解题即可.
解答:解:∵f(x+1)是定义域为R的偶函数∴f(x)关于x=1对称即f(x+1)=f(-x+1)
∵x≥1时,f(x)=(
1
2
)x-log2x

∴f(x)在[1,+∞)上单调递减
根据f(x)关于x=1对称可知f(x)在(-∞,1)上单调递增
∴f(1)=
1
2
,f(2)=-
3
4
结合图象可知|f(a)|<|f(0)|
1<
1+a
2
a

f(
1+a
2
)<f(
a
)

∵a2-a+1>a>1
∴f(a2-a+1)<f(a)
∵1<a2+1<5
∴f(a2+1)>f(5)=f(-3)故选项B不正确
故选B.
点评:本题主要考查了抽象函数的应用,同时考查了函数奇偶性和单调性,同时考查了数形结合的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
1
4x+2
(x∈R)
,P1(x1,y1)、P2(x2,y2)是函数y=f(x)图象上两点,且线段P1P2中点P的横坐标是
1
2

(1)求证点P的纵坐标是定值; 
(2)若数列{an}的通项公式是an=f(
n
m
)
(m∈N*),n=1,2…m),求数列{an}的前m项和Sm; 
(3)在(2)的条件下,若m∈N*时,不等式
am
Sm
am+1
Sm+1
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,以右焦点为圆心,椭圆长半轴为半径的圆与直线x+
3
y+3=0
相切.
(1)求椭圆的方程;
(2)E、F是椭圆C上的两个动点,A(1,
3
2
)
为定点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(1)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程;
(2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
(3)是否存在过点F(
5
,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?若存在,则求出直线m的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线x=
a2
c
(称为椭圆的右准线)于P,Q两点.
(1)若当θ=30°时有
MF
=3
FN
,求椭圆的离心率;
(2)若离心率e=
2
2
,求证:
FP
FQ
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F(-
2
,0)
,离心率e=
2
2
,M,N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA并延长交椭圆于点B,设直线MN、MB的斜率分别为kMN、kMB,求kMN•kMB的值.

查看答案和解析>>

同步练习册答案