精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=ax2+2ax+3-ba≠0,b>0)在[0,3]上有最小值2,最大值17,函数gx)=

l)求函数gx)的解析式;

(2)证明:对任意实数m,都有gm2+2)≥g(2|m|+l);

(3)若方程g(|log2x-1|)+3k-1)=0有四个不同的实数解,求实数k的取值范围.

【答案】(1);(2)详见解析;(3).

【解析】

(1)只需要利用好所给的在区间[0,3]上有最大值4,最小值1,即可列出方程求的两个未知数;

(2)可判断g(x)在(0,+∞)上为增函数,又(m2+2)-(2|m|+l)=(|m|-l)2≥0,即可判定;

(3)可直接对方程进行化简、换元结合函数图象即可获得问题的解答.

解:(1)fx)=ax2+2ax+3-b=ax+1)2+3-a-b,故抛物线的对称轴为x=-1.

①当a>0时,抛物线开口向上,∴fx)在[0,3]上为增函数.

fxmin=f(0)=3-b=2,fxmax=f(3)=15a-b+3=17.

a=1,b=1

②当a<0时,抛物线开口向下,fx)在[0,3]上为减函数.

fxmin=f(3)=15a-b+3=2,fxmax=f(0)=3-b=17.

a=-1,b=-14.又b>0,a=1,b=1符合题意

fx)=x2+2x+2.gx)=x-+2.

(2)证明:任取x2x1>0,则gx2)-gx1)=(

x2-x1>0,x1x2>0.gx2)-gx1)>0,.

gx)在(0,+∞)上为增函数.

又(m2+2)-(2|m|+l)=(|m|-l2≥0;

m2+2≥(2|m|+l)>0.gm2+2)≥g(2|m|+l).

(3)令t=|log2x-1|,则方程为g(t)+3k-1)=0,即t-+2+3k-1)=0

可化为t2+(2-3kt+3k-2=0).

因为当t>0t=|log2x-1|有两个x,

t=0t=|log2x-1|有一个x,

t<0t=|log2x-1|无解

当原方程有四个不同实数解时,关于t的(△)方程有两个不相等的正实根.

,即k>2.

故实数k的取值范围为(2,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(1)求
(2)除H以外,直线MH与C是否有其它公共点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+lg(3x)的定义域为M.

(Ⅰ)求M;

(Ⅱ)当x∈M时,求g(x)=4x-2x+1+2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1< <x;
(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数fx)=a-aRe为自然对数的底数).

(1)判定并证明fx)的单调性;

(2)若对任意实数xfx)>m2-4m+2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0对任意的xR都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2sin θ.

(1)C1的参数方程化为极坐标方程;

(2)C1C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.

1)分别求甲队以303132获胜的概率;

2)若比赛结果为3031,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1.求甲队得分X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.

(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.

查看答案和解析>>

同步练习册答案