【题目】已知函数f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函数g(x)=.
(l)求函数g(x)的解析式;
(2)证明:对任意实数m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四个不同的实数解,求实数k的取值范围.
【答案】(1);(2)详见解析;(3).
【解析】
(1)只需要利用好所给的在区间[0,3]上有最大值4,最小值1,即可列出方程求的两个未知数;
(2)可判断g(x)在(0,+∞)上为增函数,又(m2+2)-(2|m|+l)=(|m|-l)2≥0,即可判定;
(3)可直接对方程进行化简、换元结合函数图象即可获得问题的解答.
解:(1)∵f(x)=ax2+2ax+3-b=a(x+1)2+3-a-b,故抛物线的对称轴为x=-1.
①当a>0时,抛物线开口向上,∴f(x)在[0,3]上为增函数.
f(x)min=f(0)=3-b=2,f(x)max=f(3)=15a-b+3=17.
∴a=1,b=1
②当a<0时,抛物线开口向下,f(x)在[0,3]上为减函数.
f(x)min=f(3)=15a-b+3=2,f(x)max=f(0)=3-b=17.
∴a=-1,b=-14.又b>0,∴a=1,b=1符合题意
∴f(x)=x2+2x+2.g(x)=x-+2.
(2)证明:任取x2>x1>0,则g(x2)-g(x1)=(
∵x2-x1>0,x1x2>0.∴g(x2)-g(x1)>0,.
故g(x)在(0,+∞)上为增函数.
又(m2+2)-(2|m|+l)=(|m|-l)2≥0;
∴m2+2≥(2|m|+l)>0.∴g(m2+2)≥g(2|m|+l).
(3)令t=|log2x-1|,则方程为g(t)+3k(-1)=0,即t-+2+3k(-1)=0
可化为t2+(2-3k)t+3k-2=0(△).
因为当t>0时,t=|log2x-1|有两个x,
当t=0时,t=|log2x-1|有一个x,
当t<0时,t=|log2x-1|无解
当原方程有四个不同实数解时,关于t的(△)方程有两个不相等的正实根.
∴,即∴k>2.
故实数k的取值范围为(2,+∞).
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(1)求 ;
(2)除H以外,直线MH与C是否有其它公共点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx﹣x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1< <x;
(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数f(x)=a-(a∈R,e为自然对数的底数).
(1)判定并证明f(x)的单调性;
(2)若对任意实数x,f(x)>m2-4m+2恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0对任意的x∈R都成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.
(1)分别求甲队以3:0,3:1,3:2获胜的概率;
(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com