精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,
(1)已知a1=3,an=21,d=2,求n;
(2)已知a1=2,d=2,求Sn
考点:等差数列的前n项和,数列的求和
专题:等差数列与等比数列
分析:(1)直接由等差数列的通项公式结合已知得答案;
(2)直接把已知的首项和公差代入等差数列的前n项和公式得答案.
解答: 解:在等差数列{an}中,
(1)由a1=3,an=21,d=2,
得an=3+2(n-1)=2n+1=21,解得:n=10;
(2)由a1=2,d=2,得Sn=2n+
n(n-1)
2
×2=n2+n
点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示:m个实数a1,a2,…,am,(m≥3,m∈N)依次按顺时针方向围成一个圆圈.
(1)当m=2014时,若a1=1,an+1=an+2n(n∈N*且n<m),a1+a2+…+am的值;
(2)设圆圈上按顺时针方向任意相邻的三个数ap,aq,ai均满足:aq=λap+(1-λ)ai(λ>0),求证:a1=a2=…=am

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,Sn是前n项和,且Sn=2an+1,则数列的通项an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若-4<x<1,则f(x)=
x2-2x+2
2x-2
(  )
A、有最小值1
B、有最大值1
C、有最小值-1
D、有最大值-1

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,且a1+a2=10,a3+a4=26,则过点P(n,an)和Q(n+1,an+1)(n∈N*)的直线的一个方向向量是(  )
A、(-
1
2
,-2)
B、(-1,-2)
C、(-
1
2
,-4)
D、(2,
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
1
x-1
<1的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q.若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=cos2x-cosx-
11
4
x∈[
π
3
,π]
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

20是等差数列4,6,8…的(  )
A、第8项B、第9项
C、第10项D、第11项

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-3x+2
的单调递增区间为(  )
A、[
3
2
,+∞)
B、(-∞,
3
2
]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

同步练习册答案