精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x>0)的值域为集合A,
(1)若全集U=R,求CUA;
(2)对任意x∈(0,],不等式f(x)+a≥0恒成立,求实数a的范围;
(3)设P是函数f(x)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,求的值.
【答案】分析:(1)根据二阶矩阵运算的法则化得f(x)的解析式,再利用基本不等式得集合A,由补集的含义即可写出答案;
(2)由题得a≥-(x+),只须求出a大于等于函数y=-(x+)在(0,]的最大值,再利用函数的单调性得出函数y=-(x+)在(0,]的最大值,即可实数a的范围;
(3)先设P(x,x+),写出直线PA的方程,再与直线y=x的方程联立,得A点的坐标,最后利用向量数量积的坐标运算计算即得答案.
解答:解:(1)由已知得,x>0,则f(x)=x+≥2                       …(1分)
当且仅当x=时,即x=等号成立,
∴A=[2,+∞)                                       …(3分)
所以,CUA=(-∞,2)                                …(4分)
(2)由题得 a≥-(x+)                                      …(5分)
函数y=-(x+)在(0,]的最大值为-                       …(9分)
∴a≥-                                                      …(10分)
(3)设P(x,x+),则直线PA的方程为
y-(x+)=-(x-x),
即y=-x+2x+…(11分)
  得A(x+,2x+)                         …(13分)
又B(0,x+),…(14分)
所以=(,-),=(-x,0),
故 =(-x)=-1     …(16分)
点评:本题考查二阶矩阵、补集的含义、平面向量数量积的运算等,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案