精英家教网 > 高中数学 > 题目详情
已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围.
(1);(2)的单调减区间是,单调增区间是 ;(3)

试题分析:(1)首先求函数的导数,再解方程即可求得的值;(2)根据结合的取值及的定义域分类讨论求的单调区间;(3)由已知“对于,总存在使得”,知函数的值域是函数的值域的子集.先利用导数求函数的值域,最后利用集合的包含关系求出实数的取值范围.
试题解析:(1)
                     1分
得,                       2分
                       3分
(2)
,得                4分
上单调递增,               5分
(舍去)     6分






0


单调减
 
单调增
      8分
的单调减区间是,单调增区间是 ,   9分
(3)由(2)得上是减函数,
,即值域           10分
 


上递增.                11分
的值域                12分
使得
                      13分
                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2)若点在第一象限,证明当时,恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限.过轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为

(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且轴垂直,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为,则k的值为(    )
A.-21B.21C.或21D.或21

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为椭圆上一点,为两焦点,,则椭圆的离心率        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左焦点为F
A.B.C.D.

查看答案和解析>>

同步练习册答案