精英家教网 > 高中数学 > 题目详情
4.证明:1<$\frac{a}{a+b+d}$+$\frac{b}{b+c+a}$+$\frac{c}{c+d+b}$+$\frac{d}{d+a+c}$<2(其中a,b,c,d∈R+

分析 通过将分母放大可知$\frac{a}{a+b+d}$+$\frac{b}{b+c+a}$+$\frac{c}{c+d+b}$+$\frac{d}{d+a+c}$>1,通过将分数值放大可知$\frac{a}{a+b+d}$+$\frac{b}{b+c+a}$+$\frac{c}{c+d+b}$+$\frac{d}{d+a+c}$<2.

解答 证明:∵a,b,c,d∈R+
∴$\frac{a}{a+b+d}$+$\frac{b}{b+c+a}$+$\frac{c}{c+d+b}$+$\frac{d}{d+a+c}$
>$\frac{a}{a+b+c+d}$+$\frac{b}{a+b+c+d}$+$\frac{c}{a+b+c+d}$+$\frac{d}{a+b+c+d}$
=$\frac{a+b+c+d}{a+b+c+d}$
=1,
$\frac{a}{a+b+d}$+$\frac{b}{b+c+a}$+$\frac{c}{c+d+b}$+$\frac{d}{d+a+c}$
<$\frac{a+c}{a+b+c+d}$+$\frac{b+d}{a+b+c+d}$+$\frac{c+a}{a+b+c+d}$+$\frac{d+b}{a+b+c+d}$
=$\frac{2(a+b+c+d)}{a+b+c+d}$
=2,
∴1<$\frac{a}{a+b+d}$+$\frac{b}{b+c+a}$+$\frac{c}{c+d+b}$+$\frac{d}{d+a+c}$<2.

点评 本题考查不等式的证明,利用不等式的性质进行放缩是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,且曲线y=f(x在点(1,f(1))处的切线垂直于直线y=$\frac{1}{2}$x.
(1)求a的值及在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,AC=BC=$\sqrt{5}$,AB=2,点O为AB的中点,点E,F分别在BC、CA上,且EF=1,点M是线段EF的中点,若$\overrightarrow{OE}$•$\overrightarrow{OF}$≤$\frac{25}{16}$,则|$\overrightarrow{OM}$|的最大值为$\frac{\sqrt{65}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}的前n项和Sn满足:Sn=2an-3.求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sinx在区间($-\frac{π}{2}$,$\frac{3π}{2}$)上有两个不同的零点x1,x2,且方程f(x)=a有两个不同的实根x3,x4.若把x1,x2,x3,x4 从小到大排列恰好构成等差数列,则实数a的值$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.把自然数1,2,3,4,…按如图方法排成一个数阵,根据如图排列规律,求数列中第n(n≥3)行从左到右的第三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}、{bn} 满足a1=a>0,an+1=$\frac{n+1}{2n}$an,且bn=ln(1+an)+$\frac{1}{2}$an2,n∈N*
(1)证明:$\frac{2}{{a}_{n}+2}<\frac{{a}_{n}}{{b}_{n}}$<1;
(2)记{a${\;}_{n}^{2}$},{bn}的前n项和分别为An,Bn,证明:2Bn-An<8a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}中a2=3a1(a1≠0)且满足Sn+1=4Sn-3Sn-1,其中(n≥2)
(1)求证:数列{an}是等比数列;
(2)当首项a1=1时,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市三家旅游公司在国庆期间推出了“市区一日游”的豪华大巴游活动,由于私家车辆的增多,堵车已经成为旅途中最常见的问题.据统计:甲公司选择的旅游路线堵车的概率为$\frac{1}{4}$.乙、丙两公司选择的旅游路线堵车的概率为p(0<p<$\frac{2}{5}$),并且三家公司选择的旅游路线是否堵车相互之间没有影响,且三条路线只有一条路线堵车的概率为$\frac{4}{9}$.
(1)求p的值;
(2)求甲、乙、丙三家公司选择的路线中堵车路线数目ξ的分布列与数学期望.

查看答案和解析>>

同步练习册答案