精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的离心率为,短轴长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)根据题意建立关于的方程组,解之可得椭圆的方程;

(Ⅱ)联立直线的方程和椭圆的方程,得到关于交点坐标的关系,并且由根的判别式得出关于的不等式,从而得到线段的中点,和线段的垂直平分线的方程,由点在其垂直平分线上得出关于的方程,可得到关于的不等式,解之可得的范围.

(Ⅰ)由题意可知:

故椭圆的标准方程为.

(Ⅱ)设,将代入椭圆方程,

消去

所以,即…………

由根与系数关系得,则

所以线段的中点的坐标为

又线段的垂直平分线的方程为

由点在直线上,得

,所以…………

由①②得

所以,即

所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为,点上的定点,上的两个动点,且线段的中点在线段.

1)抛物线的方程及的值;

2)当点分别在第一、四象限时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线过点且与椭圆相交于两点.过点作直线的垂线,垂足为.证明直线轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线的斜率为2,求函数的单调区间;

2)若函数在区间上有零点,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值4,最小值1,设函数

1)求的值及函数的解析式;

2)若不等式时恒成立,求实数的取值范围;

3)如果关于的方程有三个相异的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PAC⊥平面ABC都是正三角形, EF分别是ACBC的中点,且PDABD.

(Ⅰ)证明:直线⊥平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设

(1)求灯柱AB的高h(用表示);

(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

同步练习册答案