【题目】椭圆的两个焦点坐标分别为F1(-,0)和F2(,0),且椭圆过点
(1)求椭圆方程;
(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点,证明.
科目:高中数学 来源: 题型:
【题目】已知定义在(0, )上的函数f(x),f'(x)为其导数,且 < 恒成立,则( )
A. f( )> f( )
B. f( )>f( )??
C.f(1)<2f( )sin1
D. f( )<f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2 .
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,(为坐标原点),直线:.抛物线:.
(Ⅰ)过直线上任意一点作圆的两条切线,切点为.求四边形的面积最小值;
(Ⅱ)若圆过点,且圆心在抛物线上,是圆在轴上截得的弦,试探究 运动时,弦长是否为定值?并说明理由;
(Ⅲ) 过点的直线分别与圆交于点两点,若,问直线是否过定点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com