精英家教网 > 高中数学 > 题目详情

【题目】椭圆的两个焦点坐标分别为F1(-,0)F2(,0),且椭圆过点

(1)求椭圆方程;

(2)过点作不与y轴垂直的直线l交该椭圆于MN两点,A为椭圆的左顶点,证明

【答案】(1)(2)见解析

【解析】

(1)设椭圆方程为,由题设代入点的坐标,求得,即可得到椭圆的方程;

(2)设直线的方程,联立方程组,利用根与系数的关系,得到,再由向量的数量积的运算求得,即可得到答案.

解:(1)设椭圆方程为

,椭圆过点 可得

解得 所以可得椭圆方程为.

(2)由题意可设直线MN的方程为:

联立直线MN和椭圆的方程:

化简得(k2+4)y2ky=0.

M(x1y1),N(x2y2),

y1y2y1y2

A(-2,0),则=(x1+2,y1)·(x2+2,y2)=(k2+1)y1y2 k(y1y2)+=0

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x),f'(x)为其导数,且 恒成立,则(
A. f( )> f(
B. f( )>f( )??
C.f(1)<2f( )sin1
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直三棱柱中,的中点.

(1)求证平面

(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题14分)已知四棱锥P-ABCD,底面ABCD、边长为的菱形,又,且PD=CD,点MN分别是棱ADPC的中点.

1)证明:DN//平面PMB

2)证明:平面PMB平面PAD

3)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为,点分别是棱的中点,点在平面内,点在线段上,若,则的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,(为坐标原点),直线:.抛物线:

(Ⅰ)过直线上任意一点作圆的两条切线,切点为.求四边形的面积最小值;

(Ⅱ)若圆过点,且圆心在抛物线上,是圆轴上截得的弦,试探究 运动时,弦长是否为定值?并说明理由;

(Ⅲ) 过点的直线分别与圆交于点两点,若,问直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.

(Ⅰ)求抛物线C的方程;

(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2+bx-ln x的导函数的零点分别为1和2.

(I) 求a , b的值;

(Ⅱ)若当时,恒成立, 求实数a的取值范围.

查看答案和解析>>

同步练习册答案