精英家教网 > 高中数学 > 题目详情
若{(x,y)|
x-2y+5≥0
3-x≥0
x+y≥0
}⊆{(x,y)|x2+y2≤m2(m>0)},则实数m的取值范围是
 
考点:集合的包含关系判断及应用
专题:集合
分析:要使{(x,y)|
x-2y+5≥0
3-x≥0
x+y≥0
}⊆{(x,y)|x2+y2≤m2(m>0)}成立,根据区间端点值的关系列式求得m的范围.
解答: 解:根据题意,
要使{(x,y)|
x-2y+5≥0
3-x≥0
x+y≥0
}⊆{(x,y)|x2+y2≤m2(m>0)},成立
则必有x-2y=5,3-x=0,x+y=0三条直线围成的区域在x2+y2=m2的即以原点为圆心,m为半径的圆的内部;
分析可得,只须使三条直线的交点在圆的内部即可;
计算可得,三条直线的交点分别是(3,-3),(3,4),(
5
3
,-
5
3
)三个交点中,(3,4)到原点距离最远,为5;
故只要(3,4)在圆的内部,就能使其他三点在圆的内部,
即只须m≥5即可;
即实数m的取值范围m≥5
点评:本题考查了集合的包含关系的应用,解答的关键是根据集合的包含关系分析区间端点值的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,点(3,
π
2
)到直线ρsin(θ-
π
4
)=2
2
的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(0,1),
b
=(1,0)且(
a
-
c
)•(
b
-
c
)=0,则|
c
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,有xf′(x)<f(-x)成立.(其中f′(x)是f(x)的导函数),若a=
1
4
f(
1
4
),b=f(1),c=log2
1
4
f(log2
1
4
)则a,b,c的大小关系是(  )
A、a>b>c
B、c>b>a
C、b>a>c
D、c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?平面向量
a
b
,|
a
-
b
|<|
a
|+|
b
|,则?p为(  )
A、?平面向量
a
b
,|
a
-
b
|≥|
a
|+|
b
|
B、?平面向量
a
b
,|
a
-
b
|<|
a
|+|
b
|
C、?平面向量
a
b
,|
a
-
b
|>|
a
|+|
b
|
D、?平面向量
a
b
,|
a
-
b
|≥|
a
|+|
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC,在AB上取一点M,使AM=
1
3
AB,在AC上取一点N,使AN=
1
3
AC,在CM的延长线上取一点P,使MP=
1
2
CM,在BN的延长线上取一点Q,使NQ=
1
2
BN,试用向量的方法证明P、A、Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足不等式组
x+y≥1
x-2y≥-2
3x-2y≤3
,若x2+y2≥a恒成立,则实数a的最大值是
 

查看答案和解析>>

同步练习册答案