精英家教网 > 高中数学 > 题目详情
已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数yf(x)在x=1处取得极值,且曲线yf(x)在点(0,f(0))处的切线与直线2xy-3=0平行,求a的值;
(2)若b,试讨论函数yf(x)的单调性.
(1)(2)当a≥0时,函数f(x)在区间为增函数;当a<0时,函数f(x)在区间为增函数;在区间为减函数.
(1)函数f(x)的定义域为f′(x)=b
由题意可得解得所以.
(2)若b,则f(x)=aln(2x+1)+x+1,
所以f′(x)=
1° 令f′(x)=>0,由函数定义域可知,4x+2>0,所以2x+4a+1>0,
①当a≥0时,xf′(x)>0,函数f(x)单调递增;
②当a<0时,xf′(x)>0,函数f(x)单调递增.
2° 令f′(x)=<0,即2x+4a+1<0,
①当a≥0时,不等式f′(x)<0无解;
②当a<0时,xf′(x)<0,函数f′(x)单调递减.
综上,当a≥0时,函数f(x)在区间为增函数;当a<0时,函数f(x)在区间为增函数;在区间为减函数
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数图象与轴异于原点的交点M处的切线为轴的交点N处的切线为, 并且平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,并且使得不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式恒成立,则正数k的取值范围是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ln x的图像与函数g(x)=x2-4x+4的图像的交点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=-xln x+ax在(0,e)上是增函数,函数g(x)=|ex-a|+,当x∈[0,ln 3]时,函数g(x)的最大值M与最小值m的差为,则a=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=mx2+ln x-2x在定义域内是增函数,则实数m的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调减区间为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导数
A.B.C.D.

查看答案和解析>>

同步练习册答案