精英家教网 > 高中数学 > 题目详情

【题目】设函数 .

(1)求函数的单调区间;

(2)若函数处取得极大值,求正实数的取值范围.

【答案】(1)见解析;(2)正实数的取值范围为

【解析】试题分析:(1求出分两种情况讨论,分别令求得 的范围,可得函数增区间, 求得 的范围,可得函数的减区间;(2讨论的取值范围分别利用导数研究函数的单调性,根据函数极值的定义,进行验证即可得到结论.

试题解析:(1)由

所以.

时, ,函数上单调递增;

时, ,函数单调递增, 时, ,函数单调递减.

所以当时, 的单调增区间为

时, 的单调增区间为,单调减区间为.

(2)∵

.

由(1)知①当时, ,由(1)知内单调递增,可得当时, ,当时, .

所以内单调递减,在内单调递增,所以处取得极小值,不合题意.

②当时, 内单调递增,在内单调递减,所以当时, 单调递减,不合题意.

③当时, ,当时, 单调递增,当时, 单调递减.

所以处取得极大值,符合题意.

综上可知,正实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(
A.x>3
B.x>4
C.x≤4
D.x≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《中华人民共和国道路交通安全法》规定:“车辆驾驶员血液酒精溶度(单位mg/100ml)/在,属于酒后驾驶;血液浓度不低于80,属于醉酒驾驶。”2017年“中秋节”晚9点开始,济南市交警队在杆石桥交通岗前设点,对过往的车辆进行检查,经过4个小时,共查处喝过酒的驾驶者60名,下图是用酒精测试仪对这60名驾驶者血液中酒精溶度进行检测后所得结果画出的频率分布直方图。

(1)求这60名驾驶者中属于醉酒驾车的人数(图中每组包括左端点,不包括右端点)

(2)若以各小组的中值为该组的估计值,频率为概率的估计值,求这60名驾驶者血液的酒精浓度的平均值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数, ,且对任意恒成立,记的前项和为.

(1)若,求的值;

(2)证明:对任意正实数 成等比数列;

(3)是否存在正实数,使得数列为等比数列.若存在,求出此时的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过的直线交抛物线于点,当直线的倾斜角是时, 的中垂线交轴于点.

(1)求的值;

(2)以为直径的圆交轴于点,记劣弧的长度为,当直线点旋转时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, ,侧面为等边三角形, .

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 是曲线与直线 )的交点(异于原点).

(1)写出 的直角坐标方程;

(2)求过点和直线垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= g(x)=

1)若,函数的图像与函数的图像相切,求的值

2)若 ,函数满足对任意x1x2),都有恒成立,求的取值范围

3)若,函数=f(x)+ g(x),G()有两个极值点x1,x2,其中x1,求的最小值.

查看答案和解析>>

同步练习册答案