精英家教网 > 高中数学 > 题目详情
17.设等差数列{an}的前n项和为Sn,且${S_n}=\frac{1}{3}n{a_n}+{a_n}-c$(c是常数,n∈N*),a2=6.
(1)求数列{an}的通项公式
(2)证明:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{9}$.

分析 (1)利用递推关系、等差数列的通项公式即可得出;
(2)利用裂项求和和放缩法证明即可.

解答 解:(1)∵Sn=$\frac{1}{3}$nan+an-c,
当n=1时,a1=S1=$\frac{1}{3}$a1+a1-c,
解得a1=3c,
当n=2,S2=$\frac{2}{3}$a2+a2-c,
即a1+a2=$\frac{2}{3}$a2+a2-c,
解得a2=6c,∴6c=6,
解得c=1.
则a1=3,数列{an}的公差d=6-3=3,
∴an=a1+(n-1)d=3+3(n-1)=3n.
(2)证明:∵$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{9n(n+1)}$=$\frac{1}{9}$($\frac{1}{n}$-$\frac{1}{n+1}$),
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{9}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{9}$(1-$\frac{1}{n+1}$)<$\frac{1}{9}$.

点评 本题考查了递推关系、“裂项求和”“放缩法”、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,点E为AD边上的中点,过点D作DF∥BC交AB于点F,现将此直角梯形沿DF折起,使得A-FD-B为直二面角,如图乙所示.
(1)求证:AB∥平面CEF;
(2)若AF=$\sqrt{3}$,求点A到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.$,若目标函数z=ax+2by(a>0,b>0)在该约束条件下的最小值为2,则$\frac{1}{a}+\frac{4}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式x2-2x-3<0成立的充要条件是x∈(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知|2x-3|≤1的解集为[m,n],则m+n的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有(  )
A.20B.21C.22D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={x|x>0},B={x|x<1},则A∩B={x|0<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}2x,x>0\\ f(x+1),x≤0\end{array}\right.$,则$f(-\frac{4}{3})$=$\frac{4}{3}$,若实数x0满足f(f(x0))=2,则x0的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=loga(2-ax)在[0,4]上为增函数,则b=4的取值范围是(  )
A.$({0,\frac{1}{2}})$B.(0,1)C.$({\frac{1}{2},1})$D.[4,+∞)

查看答案和解析>>

同步练习册答案