精英家教网 > 高中数学 > 题目详情

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 ,则λ+μ的最大值为( )
A.3
B.2
C.
D.2

【答案】A
【解析】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,

则A(0,0),B(1,0),D(0,2),C(1,2),
∵动点P在以点C为圆心且与BD相切的圆上,
设圆的半径为r,
∵BC=2,CD=1,
∴BD= =
BCCD= BDr,
∴r=
∴圆的方程为(x﹣1)2+(y﹣2)2=
设点P的坐标为( cosθ+1, sinθ+2),

∴( cosθ+1, sinθ﹣2)=λ(1,0)+μ(0,2)=(λ,2μ),
cosθ+1=λ, sinθ+2=2μ,
∴λ+μ= cosθ+ sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵﹣1≤sin(θ+φ)≤1,
∴1≤λ+μ≤3,
故λ+μ的最大值为3,
故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知公比小于1的等比数列{an}的前n项和为Sn , a1= ,且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3(1﹣Sn+1),若 + +…+ = ,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“双一流A类大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:

(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;

(2)同一组数据用该区间的中点值作代表.

(i)求这100人月薪收入的样本平均数和样本方差

(ii)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:

方案一:设,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收到600元,月薪落在区间右侧的每人收取800元.

方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是 , com∠BDC=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按 分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).

(1)求样本容量和频率分布直方图中的

(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在 内的株数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

查看答案和解析>>

同步练习册答案