分析 随机变量ξ服从标准正态分布N(0,1),知正态曲线关于x=0对称,根据P(ξ≥1)=p,得到P(1>ξ>0)=$\frac{1}{2}$-p,再根据对称性写出要求概率.
解答 解:∵随机变量ξ~N(0,1),P(ξ>1)=p,
∴画出正态分布N(0,1)的密度函数的图象如图:
由图象的对称性可得,
∵ξ~N(0,1),
∴P(-1<ξ<0)
=P(0<ξ<1)
∵P(ξ≥1)=p,
∴P(0<ξ<1)=$\frac{1}{2}$-p,
∴P(-1<ξ<0)=$\frac{1}{2}$-p.
故答案为:$\frac{1}{2}-$p.
点评 本题考查正态分布曲线的特点及曲线所表示的意义,本题的主要依据是曲线的对称性,这种问题可以出现在选择或填空中.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {6} | B. | {0,3,5} | C. | {0,3,6} | D. | {0,1,3,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[\frac{1}{e}$,+∞) | B. | $[-\frac{1}{e}$,+∞) | C. | (0,e) | D. | $[-\frac{1}{e}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a>0,则2a>1 | B. | 若x2+y2=0,则x=y=0 | ||
C. | 若b2=ac,则a,b,c成等比数列 | D. | 若sinα=sinβ,则不一定有α=β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 1+$\sqrt{2}$ | C. | 7 | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com